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Abstract 

Background Low salinity is a crucial environmental stressor that affects estuarine coral ecosystems considerably. 
However, few studies have focused on the effects of low-salinity conditions on coral-associated microorganisms 
and the adaptability of coral holobionts.

Methods We explored the community structure of coral symbiotic Symbiodiniaceae and associated bacteria in low-
salinity conditions using samples of six coral species from the Pearl River Estuary and analyzed the adaptability of coral 
holobionts in estuaries.

Results The symbiotic Symbiodiniaceae of all six studied coral species were dominated by Cladocopium, but, 
the Symbiodiniaceae subclades differed among these coral species. Some coral species (e.g., Acropora solitaryensis) 
had a high diversity of symbiotic Symbiodiniaceae but low Symbiodiniaceae density, with different adaptability 
to low-salinity stress in the Pearl River Estuary. Other coral species (e.g., Plesiastrea versipora) potentially increased 
their resistance by associating with specific Symbiodiniaceae subclades and with high Symbiodiniaceae density 
under low-salinity stress. The microbiome associated with the coral species were dominated by Proteobacteria, 
Chloroflexi, and Bacteroidetes; however, its diversity and composition varied among coral species. Some coral species 
(e.g., Acropora solitaryensis) had a high diversity of associated bacteria, with different adaptability owing to low-salinity 
stress. Other coral species (e.g., Plesiastrea versipora) potentially increased their resistance by having minority bacterial 
dominance under low-salinity stress.

Conclusions High Symbiodiniaceae density and high bacterial diversity may be conducive to increase the tolerance 
of coral holobiont to low-salinity environments. Different coral species have distinct ways of adapting to low-salinity 
stress, and this difference is mainly through the dynamic regulation of the coral microbiome by corals.
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Introduction
Coral reefs, known as the “rainforests of the ocean,” are 
distributed in 110 countries and regions worldwide, 
accounting for approximately 0.17–0.5% of the global 
ocean and providing habitat for approximately 30% of 
marine organisms [1, 2]. The association between coral 
hosts and their microbiome is the basis for coral growth 
and reef development [3]. Coral holobionts include 
cnidarian polyps, bacteria, Symbiodiniaceae, archaea, 
fungi, and other microorganisms [4, 5]. Symbiodiniaceae 
are critical microorganisms in coral holobionts that use 
light energy for photosynthesis and provide fixed organic 
carbon to the coral host [6]. Symbiodiniaceae can uti-
lize the metabolic waste produced by the coral host to 
replenish its nitrogen, phosphorus, and other vital nutri-
ents [7]. Community-associated bacterial communities 
play key roles in coral holobionts, including nitrogen [8, 
9], carbon [10], sulfur [11, 12], phosphorus fixation [13], 
intrametallic homeostasis [13], tissue repair [13], and 
antibiotic production [14]. Many coral-associated bac-
teria also protect corals from invasion by pathogens and 
other exogenous bacteria by secreting antibiotics [14, 15].

Corals are generally considered stenohaline, with lim-
ited ability to regulate osmotic pressure and adapt to or 
survive salinity changes [16]. Salinity is a critical environ-
mental factor affecting their growth and distribution, and 
the suitable salinity range for growth is generally 32–40‰ 
[17]. Changes in salinity due to climate change may affect 
the physiology and metabolism of corals [18–20]. The cor-
als have poor ability to regulate cellular osmotic pressure 
[21]. A short-term decline in salinity leads to significant 
changes in cellular respiration and photosynthesis in the 
coral symbiont Symbiodiniaceae [22]. Freshwater runoff is 
a major cause of coral mortality in estuarine coral reefs, 
particularly in those close to major river systems [22].

Environmental changes caused by global warm-
ing and destructive anthropogenic activity exacerbate 
damage to coral reef ecosystems and predispose coral 
holobionts to dysbiosis [23, 24], leading to high suscep-
tibility to infections by opportunistic pathogens and 
coral mortality. Estuarine ecosystems are character-
ized by complex and variable environments, high bio-
diversity and productivity, and a high degree of human 
disturbance [25]. Global climate change has led to an 
unusual increase in extreme rainfall events in mul-
tiple regions [26–28], resulting in marine organisms 
frequently experiencing low-salinity stress in estua-
rine regions. Low salinity is one of the causes of coral 
bleaching. Many studies have explored the effects of 
low salinity on the physiological performance of the 
early stages of coral; for example, low salinity decreases 
coral larval recruitment and growth rates [29–31]. Low 
salinity may affect the physiological and biochemical 

processes, cellular changes, microbiome alterations, as 
well as the reproductive and survival capabilities of cor-
als [32–34]. Low salinity stress can disrupt the symbi-
otic relationship within the coral holobiont, influencing 
the adaptability and stability of the coral holobiont [22]. 
In conclusion, Low-salinity stress can severely impact 
the growth, reproduction, photosynthesis, and respira-
tion of corals, impair the normal functions of cells, and 
pose a serious threat to the health of corals [22, 35].

The sea section of the Pearl River Estuary in Guang-
dong represents the estuary of the Pearl River, the sec-
ond largest river in China in annual runoff. Facing the 
South China Sea, the Pearl River Estuary is a typhoon-
prone area and is susceptible to storm surges and flood-
ing outbreaks, resulting in a large influx of freshwater 
into the estuary [36]. Corals in the Pearl River Estuary 
are affected by the year-round influx of freshwater. In 
the summer of 2022, record-breaking pre-flood rainfall 
in South China was lasted from May to June, resulting 
in a severe coral bleaching event in the coral communi-
ties of the Wanshan Islands in the Pearl River Estuary 
[37]. However, the effects of low-salinity stress on coral 
holobionts in the Wanshan Islands, and corals’ adapta-
bility to low-salinity environments, are not well studied.

In this study, we aimed to answer two fundamental 
questions: are there differences in coral microorgan-
isms in the coral communities of the Pearl River Estu-
ary, and how well are the coral holobionts adapted to 
low salinity. We tested two hypotheses: (1) the com-
positions of coral microorganisms in the coral com-
munities of the Pearl River Estuary vary in low-salinity 
conditions when compared with high salinity condi-
tions, and (2) the physiological parameters of corals 
influence coral adaptability to low-salinity. To answer 
the two questions, we collected local water quality 
parameters and the coral symbiotic Symbiodiniaceae 
density, chlorophyll a (Chl a) content, and microbial 
diversity throughout the Pearl River Estuary. The find-
ings of this study enhance the understanding of changes 
in estuarine coral reef communities and facilitate the 
conservation of estuarine corals and further research.

Experimental procedures
Study area and coral sample collection
The study area was located in the Wanshan Islands, Pearl 
River Estuary, China (Fig. 1). The Pearl River is the largest 
river in southern China and comprises Lingdingyang, Jid-
ianmen, Mudianmen, and Huangmaohai. A large amount 
of freshwater from the Pearl River flows into the South 
China Sea, resulting in the salinity of seawater in the 
Pearl River Estuary being lower than the average salinity 
of seawater. Furthermore, rainstorms decrease seawater 
salinity in the Pearl River Estuary. In this study, after the 
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rainstorm, two islands, Pingzhou and Miaowan, from the 
Pearl River Estuary were used for coral sample collection 
(Fig. 1). Water parameters, including the seawater surface 
temperature (SST; °C), surface water dissolved oxygen 
content (DO; mg/L), and salinity (Sal), were measured 
around the two islands.

In the Wanshan Islands, the dominant coral genera are, 
for example, Plesiastrea, Platygyra, Porites, Montipora, 
and Acropora [38]. In this study, 36 samples of six rep-
resentative coral species, Platygyra daedalea, Plesiastrea 
versipora, Acropora solitaryensis, Montipora peltiformis, 
Echinophyllia aspera, and Galaxea fascicularis, were col-
lected from around the two islands at water depths of 
3–6 m. Among these samples, there are six samples for 
each coral species. The coral samples were obtained by 
scuba divers using hammers and chisels. The coral sam-
ples were cleaned using artificial sterile seawater (salin-
ity: 35‰) to ensure they were not disturbed by free-living 
Symbiodiniaceae and fungi. A portion of the coral sam-
ples were 20–50  cm−2 in size, and Symbiodiniaceae den-
sity and chlorophyll a (Chl a) content were determined. 
The remaining coral samples were cut and placed in 5 
mL freezing tubes, immediately snap-frozen, and stored 
in liquid nitrogen for subsequent experiments. The data 
related to corals in normal salinity were extracted from 
existing studies and reanalyzed [39–46]. Relevant data 
comprised Symbiodiniaceae density, Chl a content, sym-
biotic Symbiodiniaceae and coral-associated bacteria 
composition, and diversity of coral-associated bacteria. 
The data from under normal salinity were compared with 
those from low-salinity conditions, and their differences 
were observed.

Coral symbiotic Symbiodiniaceae
Measurement of coral symbiotic Symbiodiniaceae density 
and Chl a content
Coral tissue was removed using a Waterpik™ (3–5 kgf 
 cm−2) containing 0.22 μm filtered seawater, and the 
volume of the initial slurry was measured in a gradu-
ated cylinder. The slurry was homogenized and re-
sampled into four 3 mL aliquots. The slurry samples 
were centrifuged for 5 min (6,500 r·min−1). After dis-
carding the supernatant, the Symbiodiniaceae at the 
bottom were preserved in 1 mL 5% formaldehyde at 6 
°C for 2–4 h before proceeding to the next step of the 
analysis. Repeated counts of Symbiodiniaceae densities 
were performed using hemocytometry (n = 8–12). The 
coral surface area was determined based on the correla-
tion between the weight of the aluminum foil and the 
surface area [47, 48]. In detail, the aluminum foil was 
pressed to cover the surface of the coral skeleton, and 
the foil from the covered area was cut and weighted. A 
10 × 10 cm piece of aluminum foil was used to confirm 
the weight of the foil per square centimeter. The sur-
face area of the coral skeleton was calculated using the 
weight of the foil covering the surface of the coral skel-
eton and the weight of the foil per square centimeter. 
Next, 2 mL of the algal solutions were collected thrice 
from the same sample bottle in 2 mL centrifuge tubes 
and centrifuged for 5 min (4,000 r·min−1). The super-
natant was slowly removed, 1.5 mL acetone solution 
was added to the precipitate, and these samples were 
stored at 4 ℃ for 24 h. The extracted solutions were 
centrifuged for 5 min (4,000 r·min−1), and 200 μL of the 
supernatant was collected to determine the absorbance 

Fig. 1 Sampling site information. Coral samples and local water environmental parameters were collected in two islands of Pingzhou and Miaowan, 
from the Wanshan Islands, Pearl River Estuary, China
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by using a spectrophotometer at wavelengths of 750, 
664, 647, and 663 nm. The Mann–Whitney U test was 
used to analyze the significance of differences between 
groups (p < 0.05).

Total DNA extraction, Polymerase Chain Reaction (PCR) 
amplification, and Illumina MiSeq sequencing of coral 
symbiotic Symbiodiniaceae
The total DNA of coral holobionts was extracted as fol-
lows: ~ 50 mg of coral tissue and mucus was sampled, and 
genomic DNA was extracted using the DNeasy® Plant 
Kit per the manufacturer’s instructions. The extracted 
DNA samples were used as PCR templates after the 
examination of quality and purity. The quality and con-
centration of DNA were determined using 1.0% agarose 
gel electrophoresis and a NanoDrop2000 spectropho-
tometer (Thermo Scientific, United States) and stored at 
–80 ℃ for further use. PCR amplification of the Symbio-
diniaceae ITS2 region of rDNA was performed using the 
primers F:5′-GAA TTG CAG AAC TCC GTG -3′ and R:5′-
GGG ATC CAT ATA TGC TTA AGT TCA GCG GGG T-3′, 
with a six-nucleotide barcode unique to each sample [49, 
50], and a 50 μL reaction volume PCR amplification was 
performed. The reaction volume contained ~ 50 ng DNA, 
25 μL 2 × Taq Platinum Polymerase Chain Reaction Mas-
ter Mix (Tiangen, China), 200 nM of each primer, and 
ddH2O added to achieve the final volume. The reaction 
was conducted for 5 min at 94 °C, 35 cycles of 30 s at 94 
°C, 30 s at 51 °C, and 30 s at 72 °C, with a final extension 
for 5 min at 72 °C, using an ABI GeneAmp® 9700 thermal 
cycler [51]. Triplicate PCR products were collected from 
each sample, purified, and quantified using the AxyPrep 
DNA Gel Extraction Kit and QuantiFluor™ ST Fluores-
cence Quantification System for sizes between 301 and 
340 bp. Purified amplicons were pooled in equimolar 
amounts and subjected to paired-end sequencing on an 
Illumina MiSeq platform according to standard protocols 
(2 × 300).

Analysis of α‑diversity and community composition 
of coral symbiotic Symbiodiniaceae
Strict quality control and sequence filtering were per-
formed to ensure the accuracy of the results. After short 
and low-quality sequences were removed by the sequenc-
ing company, full-length ITS2 rDNA fragments were 
obtained by applying the paired-end-sequence amalga-
mation (PEAR) tool to merge overlapping PE reads to 
generate ITS2 sequences [52]. After identifying a unique 
sequence, ITS2 tags were demultiplexed into all sam-
ples using the QIIME 2 platform [53]. BLASTn was used 
to compare all ASV sequences with the ITS2 database 
[54, 55]. The resulting symbiont ITS2 Symbiodiniaceae 

subclade counts were combined for downstream statisti-
cal analyses. The symbiotic Symbiodiniaceae H′ diversity 
index was calculated using the R software environment 
(version 4.2.3) and Bray–Curtis to assess the α-diversity 
in the symbiotic Symbiodiniaceae composition among 
coral species. Kruskal–Wallis analysis was performed 
on the α-diversity data based on different corals. A phy-
logenetic tree of the Symbiodiniaceae was constructed 
in MEGA 6 by using the maximum likelihood method 
(based on the Kimura 2-parameter model) [44, 56]. Raw 
reads were deposited into the NCBI Sequence Read 
Archive database (Accession Number: PRJNA1086834).

Coral‑associated bacteria
Total DNA extraction, PCR amplification, and Illumina MiSeq 
sequencing of coral‑associated bacteria
Approximately 50 mg of coral tissue and mucus was cut 
with scissors, and the total genomic DNA was extracted 
from the coral samples by using the TIANamp Marine 
Animal DNA Kit per the manufacturer’s instructions. The 
quality and concentration of DNA were determined using 
1.0% agarose gel electrophoresis and a NanoDrop2000 
spectrophotometer (Thermo Scientific, United States) 
and stored at –80 ℃ for further use. The total genomic 
DNA that fulfilled the conditions 1.8 < 260/280 < 2.0 and 
260/230 > 2.0 was used as a template. Upstream primers 
carrying Barcode sequences 338F (5’-ACT CCT ACG GGG 
AGG CAG CAG-3’) and 806R (5’-GGA CTA CHVGGG 
TWT CTAAT-3’) were used with the ABI GeneAmp® 
9700 Thermal Cycler for the PCR amplification of the V3–
V4 region of the bacterial 16S rRNA gene [48, 57]. An ABI 
GeneAmp 9700 thermal cycler (Thermo Fisher Scientific, 
Waltham, MA, United States) was used as a PCR reaction 
system, and the reactions were conducted under the fol-
lowing conditions: 3 min at 95°C, followed by 35 cycles 
of 95°C for 30 s, 55°C for 30 s, 72°C for 45 s, and a final 
extension at 72°C for 10 min. PCRs were run in triplicate 
per sample, which were conducted using a 20 μL reaction 
volume of TransGen AP221-02 (TransGen Biotech, Bei-
jing, China) containing: 4 μL 5 × FastPfu Buffer (TransGen 
Biotech, Beijing, China), 2 μL 2.5 mM dNTPs, 0.8 μL (5 
μm) forward primer, 0.8 μL (5 μm) reverse primer, 0.4 μL 
FastPfu DNA Polymerase (TransGen Biotech, Beijing, 
China), 0.2 μL BSA and 10 ng template DNA; the final 
volume was adjusted to 20 μL using  ddH2O [55]. Next, 2 
μL amplified product was collected, and product integ-
rity was determined using 2% agarose gel electrophore-
sis at a voltage of 115 V for 45 min to confirm whether 
the fragment size was between 420 and 460 bp. PCR 
products were purified using PCR Clean-up Kit accord-
ing to the manufacturer’s instructions (Yuhua, China), 
and Qubit 4.0 (Thermo Fisher Scientific, USA) was used 
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to detect and quantify the recovered products. The puri-
fied PCR products were constructed using NEXTFLEX ® 
Rapid DNA-SeqKit: (1) split-link (2) Use magnetic bead 
screening to remove split-self-connected segments; (3) 
Enrichment of library templates by PCR amplification; (4) 
The PCR products were recovered by magnetic beads to 
obtain the final library. Sequencing was performed using 
the umimaNextseq2000 platform (Majorbio Biopharm 
Technology Company, Shanghai, China). Raw reads were 
deposited into the NCBI Sequence Read Archive database 
(Accession Number: PRJNA1086806).

Analysis of α‑diversity and community composition 
of associated bacteria
Paired reads of the bacterial 16S rRNA gene output from 
the Illumina MiSeq platform were merged with over-
lapping PE reads by using PEAR software to obtain the 
complete 16S rRNA gene V3–V4 region sequence, which 
allowed for a maximum mismatch ratio of 0.2. The com-
plete 16S rRNA gene V3–V4 region was homogenized 
to remove average quality scores of < 20 and bases of < 50 
bp. Sequence orientation was based on primer sequences 
with valid sequences from barcode-identified samples. 
Non-repetitive sequences were extracted using Uparse. 
Single sequences and chimeras without repeats were 
removed, and based on the valid ASV data, they were 
processed and denoised. Next, species were classified to 
obtain the ASVs of bacterial samples for the assessment 
and statistical analysis of bacterial diversity and commu-
nity composition. The SILVA v138 database was used for 
the identification of bacterial species. Rarefaction curves 
construction as well as alpha diversity indices were calcu-
lated on rarified data set (30,000 sequences for bacteria) 
using the Mothur (v1.30.2). Alpha diversity indices were 
compared with Kruskal Wallis test using the stats pack-
age in R (v3.3.1). The bacterial community composition 
was visualized by NMDS based on Bray–Curtis distance, 
using the Vegan package in R software (version 4.2.3). 
PERMANOVA was conducted to test for statistically sig-
nificant differences in community composition among 
groups [58].

Results
Water parameters of Wanshan Islands, Pearl River Estuary
The water parameters of the Wanshan Islands in the Pearl 
River Estuary showed that in July 2022, the SST ranged 
from 29.44 ± 0.07 °C to 29.72 ± 0.08 °C, DO ranged from 
6.65 ± 1.46 to 7.84 ± 0.56 mg/L, and salinity ranged from 
23.26 ± 0.05‰ to 24.83 ± 1.03‰. Owing to heavy rainfall 
in the upper reaches of the Pearl River over several days, 
a large amount of freshwater was imported into the Pearl 
River Estuary, resulting in low-salinity conditions. In 

this study, the average salinity of the sampling sites was 
24.4 ± 1.1‰, which is much lower than the normal salin-
ity level (30.61–32.39‰) in the Pearl River Estuary [59], 
indicating that corals are subjected to low-salinity condi-
tions in the Wanshan Islands.

Coral symbiotic Symbiodiniaceae in Wanshan Islands, Pearl 
River Estuary
Density and Chl a content of coral symbiotic 
Symbiodiniaceae
The Symbiodiniaceae density significantly differed among 
the six coral species (Fig.  2A, p < 0.05, Table  S1). The 
symbiotic Symbiodiniaceae density assessment results 
showed that P. daedalea had the highest Symbiodini-
aceae density (6.91 ± 2.07 ×  106 cells/cm2), and E. aspera 
had the lowest density (3.31 ± 0.88 ×  106 cells/cm2). Thus, 
the densities of other Symbiodiniaceae coral species were 
between those of P. daedalea and E. aspera.

Moreover, there was a significant difference in Chl a 
content among these coral species (p < 0.05). G. fascicu-
laris exhibited the highest Chl a content (14.88 ± 2.19 μg/
cm2), which was much higher than those of the other 
coral species (Fig.  2B). The lowest Chl a content was 
4.55 ± 1.56 μg/cm2 for A. solitaryensis, M. peltiformis, P. 
versipora, P. daedalea, and E. aspera. The Chl a content 
of E. aspera was between that of A. solitaryensis and G. 
fascicularis.

Diversity of coral symbiotic Symbiodiniaceae
In this study, 1,535,930 Symbiodiniaceae ITS2 reads were 
obtained in low-salinity conditions to fulfill the analy-
sis criteria after rigorous screening and quality control. 
Of the Symbiodiniaceae ASVs, 1,070 valid ASVs were 
obtained for diversity and community analyses.

The Ace, Chao, Shannon, and Simpson indices for the 
symbiotic coral Symbiodiniaceae are shown in Fig. 3 and 
Table  S2. The symbiotic Symbiodiniaceae of E. aspera 
had the highest Shannon index (2.09 ± 0.05), and that of P. 
daedalea was the lowest (1.27 ± 0.22). Overall, significant 
differences were observed in the diversity indices among 
the six coral species (p < 0.05).

Composition of coral symbiotic Symbiodiniaceae
As shown in the composition diagram (Fig.  4), Clado-
copium was the dominant Symbiodiniaceae among the 
six coral species (relative abundance > 97%, Table  S3). 
Among them, A. solitaryensis, P. daedalea, and G. fas-
cicularis had similar compositions to Symbiodiniaceae, 
and the abundance of the dominant Cladocopium C1 
ranged from 80.4% to 84.5%. The compositions of P. ver-
sipora, E. aspera, and M. peltiformis differed from those 
of A. solitaryensis, P. daedalea, and G. fascicularis. P. 
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versipora had the highest percentage of Cladocopium C1, 
and the abundance of Cladocopium C1 was lower than 
that of A. solitaryensis, P. daedalea, and G. fascicularis. 
Cladocopium Cspc, Cladocopium C44, and Cladocopium 
C1p were highly abundant (> 5%). The symbiotic Sym-
biodiniaceae of E. aspera had the highest abundance of 
Cladocopium C18 (49.7%), followed by Cladocopium 
C1 (26.4%) and Cladocopium C1p, Cladocopium C16 
(> 5%). Cladocopium C3d was dominant in M. peltiformis 

(79.8%). Cladocopium C21.11 and Cladocopium Cspc 
also showed a high abundance (> 5%).

A phylogenetic tree of the dominant Symbiodiniaceae 
subclades in low-salinity conditions was constructed 
(Fig.  5). Three major groups were suggested for the 
development of the symbiotic Symbiodiniaceae in six 
coral species from the Pearl River Estuary. Cladocopium 
C16, Cladocopium C21.11, and Cladocopium Cspc had 
close phylogenetic relationships, and the phylogenetic 

Fig. 2 Symbiodiniaceae density (a) and Chl a content (b) of six coral species from the Wanshan Islands, Pearl River Estuary. ‘a’, ‘b’ and ‘c’ represent 
the differences between different corals in Symbiodiniaceae density and Chl a conten, respectively (Mann–Whitney U test, P < 0.05)
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relationships of Cladocopium C65a, Cladocopium C1p, 
and Cladocopium C72 were closer than those of Cla-
docopium C44, Cladocopium C1ca, and Cladocopium 
C1. The symbiotic Symbiodiniaceae composition of M. 
peltiformis, including Cladocopium C3.14, Cladocop-
ium C21.11, Cladocopium Cspc, and Cladocopium C3d, 
showed closer phylogenetic relationships. The symbiotic 
Symbiodiniaceae composition of A. solitaryensis, includ-
ing Cladocopium Cspc, Cladocopium C72, Cladocopium 
C1p, Cladocopium C1p.C45, Cladocopium C1ca, Clado-
copium C1, and Cladocopium C78a, showed closer phy-
logenetic relationships.

Diversity and composition of coral‑associated bacteria 
in Wanshan Islands, Pearl River Estuary
Diversity of coral‑associated bacteria
In this study, 1,425,904 reads were obtained from the 
six coral species after rigorous screening and qual-
ity control (Table  S4). After excluding archaea, chloro-
plasts, and mitochondrial sequences, in total, 16,112 

valid bacterial ASVs were identified. Per these bacterial 
ASVs, the Shannon index showed that A. solitaryensis 
had a relatively low level of associated bacterial diversity 
and that P. versipora and G. fascicularis had higher lev-
els of associated bacterial diversity (Fig. 6). The Shannon 
index also showed a significant difference in bacterial 
community diversity between P. versipora and A. solita-
ryensis (p < 0.001). The bacterial community diversity of 
P. versipora and M. peltiformis also significantly differed 
(p < 0.05). The Simpson diversity index was the opposite 
of that of the Shannon diversity index. The Ace index 
statistics showed that P. versipora and G. fascicularis had 
the highest levels of total ASVs (Fig. 6), and A. solitaryen-
sis had the lowest levels of total bacterial species, which 
differed from those of P. versipora (p < 0.05). In normal 
salinity, the Sobs index and Shannon index of M. pelti-
formis and Platygyra were lower than in low-salt condi-
tions. Furthermore, at normal salinity, the Simpson index 
of M. peltiformis and Platygyra was higher than that of 

Fig. 3 Diversity indices of coral symbiotic Symbiodiniaceae of six coral species from the Wanshan Islands, Pearl River Estuary. The statistical 
differences were calculated by the Kruskal–Wallis H Test followed by pairwise testing using the Mann–Whitney U test (*: 0.01 < p < 0.05; **: 
0.001 < p < 0.05; ***: p < 0.001)
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low-salinity conditions. These results indicated increased 
bacterial diversity in corals in low-salinity conditions.

According to the NMDS analysis (Fig.  7), the commu-
nity composition of the bacteria associated with the six 
coral species suggested that E. aspera differed significantly 
(p < 0.05) from the other coral species in associated bac-
terial community composition. The NMDS analysis also 
suggested that the associated bacteria community of P. versi-
pora differed significantly from those of the other coral spe-
cies (p < 0.05). A. solitaryensis, M. peltiformis, P. daedalea, 
and G. fascicularis had similar bacterial communities.

Composition of coral‑associated bacteria
At the phylum level, the bacteria associated with A. soli-
taryensis and P. daedalea were dominated by Proteo-
bacteria (Fig. 8, Table S5). For P. versipora and E. aspera, 
Chloroflexi were the dominant bacteria; other bacteria, 
such as Proteobacteria, Bacteroidota, and Actinomyce-
tota, also had relatively high abundances. In the cases of 

G. fascicularis and M. peltiformis, the dominant bacteria 
were Proteobacteria, Bacteroidota, and Firmicutes. The 
bacterial composition of corals in normal salinity differs 
from that in low-salinity conditions. The bacteria asso-
ciated with M. peltiformis were dominated by Cyano-
bacteria, with relative abundances of 92.15% at normal 
salinity. In normal conditions, the relative abundances 
of γ-proteobacteria (20%), α-proteobacteria (12%), and 
Cyanobacteria (39%) in the associated bacteria commu-
nity of G. fascicularis were relatively high. The dominant 
bacteria in both low-salt conditions is Proteobacteria, 
and the dominant bacteria in normal salinity is Cyano-
bacteria. For Platygyra, Proteobacteria was the dominant 
phylum, with 71.87% in normal salinity, followed by Fir-
micutes. This suggests that different corals are affected 
by low salinity to different degrees and that low-salinity 
conditions affect the composition of some coral symbi-
otic bacteria.

Fig. 4 Composition of symbiotic Symbiodiniaceae in six coral species from the Wanshan Islands, Pearl River Estuary. The Symbiodiniaceae 
subclades such as C1, C44, and Cspc,were be classified as the Cladocopium 
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At the genus level, we selected the top 30 bacte-
ria in terms of total abundance for plotting. Among 
these six coral species had high abundances of Vibrio 
(relative abundance: 4.2 ± 4.8%) and Rhodobacteraceae 
(relative abundance: 3.9 ± 2.6%, Fig.  9, Table  S6). G. fas-
cicularis had high abundances of Pseudomonas (relative 
abundance: 4.6 ± 2.4%), Photobacterium (relative abun-
dance: 4.5 ± 2.4%), and Pseudoalteromonas (relative abun-
dance: 4.5 ± 2.4%). Ruegeria was observed in P. daedalea 
and M. peltiformis, with relative abundances of 2.9 ± 1.9% 
and 1.0 ± 1.2%, respectively. At the genus level, in normal 
salinity, the bacteria associated with M. peltiformis were 
dominated by Synechococcus CC9902 (89.16%). The domi-
nant genus in Platygyra was Endozoicomonas (52.30%). 
The results demonstrated that the dominant genus com-
position of corals differed significantly between normal 
salinity and low-salinity conditions (Mann–Whitney U 
test, p < 0.05).

Discussion
Adaptation of coral‑Symbiodiniaceae holobionts 
to the low‑salinity in the Pearl River Estuary
Owing to the influences of short-term rainstorms and 
massive freshwater input, low-salinity conditions endure 
in the Pearl River Estuary. Low-salinity conditions have 
significant negative impacts on coral-Symbiodiniaceae 
holobionts, and coral symbiotic Symbiodiniaceae density 
decreases in low salinity [22, 60]. The symbiotic Symbio-
diniaceae density reflects differences in the adaptability 
of coral species in low-salinity conditions. For example, 
G. fascicularis can normally survive more than 60 d when 
exposed to 20‰ salinity [61]; however, the growth rate 
of Platygyra acuta slows when the salinity is < 26‰ and 
stops at salinities < 22‰ [30]. In low-salinity conditions, 
Liu et  al. [60] found that the Symbiodiniaceae density 
and Chl a content of Porites lutea decreased significantly 
when the surrounding seawater salinity was < 30‰, and 

Fig. 5 Phylogenetic tree of coral symbiotic Symbiodiniaceae of six coral species from the Wanshan Islands, Pearl River Estuary
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Fig. 6 Diversity indices of coral-associated bacteria of six coral species from the Wanshan Islands, Pearl River Estuary. The statistical differences 
were calculated by the Kruskal–Wallis H Test followed by pairwise testing using the Mann–Whitney U test (*: 0.01 < p < 0.05; **: 0.001 < p < 0.05; ***: 
p < 0.001)

Fig. 7 NMDS analysis of associated bacteria of six coral species from the Wanshan Islands, Pearl River Estuary
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the Symbiodiniaceae density and Chl a content decreased 
dramatically when the salinity decreased from 30‰ to 
20‰ until the corals bleached. Similarly, in this study, 
the density and Chl a content of coral symbiotic Symbi-
odiniaceae differed significantly in the low-salinity con-
ditions of the estuary, with some corals showing high 
Symbiodiniaceae densities and Chl a content, such as G. 
fascicularis; other corals showed low Symbiodiniaceae 
densities, such as E. aspera. The Symbiodiniaceae den-
sity of P. versipora was 6.8 ×  106 cells/cm2 [39], and that 

of M. peltiformis was 4 ×  106 cells/cm2 at normal salinity 
[40]. Both corals exhibited a decrease in Symbiodiniaceae 
density in low-salinity conditions. The Chl a content of A. 
solitaryensis was 15.21 μg/cm2, and that of M. peltiformis 
was approximately 11 μg/cm2 at normal salinity [41, 42]. 
In this study, the Chl a content of A. solitaryensis was 
2.43 μg/cm2, and that of M. peltiformis was 8.09 μg/cm2 
in low-salinity conditions. Both corals showed decreases 
in Chl a content. These findings suggest that low-salin-
ity conditions affect Symbiodiniaceae density and Chl a 

Fig. 8 Composition of coral-associated bacteria at the phylum level in the Wanshan Islands, Pearl River Estuary
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content, and differences in Symbiodiniaceae density and 
Chl a content could be responsible for the different adap-
tations of corals to low-salinity conditions.

Environmental factors drive various types of and differ-
ent environmental influences in Symbiodiniaceae coral 
holobionts [62, 63]. Studies have found that the dominant 
symbiotic Symbiodiniaceae is closely related to the tol-
erance of coral-Symbiodiniaceae holobionts to environ-
mental stress [64–66]. Symbiodiniaceae subclades confer 
different physiological characteristics and environmental 
tolerances to coral holobionts [65, 67, 68]. In this study, 
the dominant symbiotic Symbiodiniaceae subclades in 

all corals were Cladocopium C1, excluding M. peltiformis 
and E. aspera. Some corals with Cladocopium C1-dom-
inant species had a lower percentage of Cladocopium 
C1 than corals in normal salinity conditions, for exam-
ple, P. versipora with 75% in normal salinity and 41.5% 
in this experiment [43], and some coral Cladocopium 
C1 percentage gaps do not vary much, for example, G. 
fascicularis, with approximately 80% in normal and low-
salinity conditions [43]. Cladocopium C1 is a subclade 
of Symbiodiniaceae with high photosynthetic efficiency 
[69]. Under the low-salinity stress, corals may establish 
a symbiotic relationship with highly photosynthetically 

Fig. 9 Associated bacterial composition at the genus level of six coral species in the Wanshan Islands, Pearl River Estuary
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efficient Symbiodiniaceae to maintain the functioning 
of the calcium carbonate secretion-storage system [70]. 
However, some of the dominant symbiotic Symbiodini-
aceae subclades change from corals between the normal 
salinity and low-salinity conditions. In normal condi-
tions, for example, the dominant symbiotic Symbiodini-
aceae subclades of the M. peltiformis were Cladocopium 
C3d, followed by Cladocopium C2r [44]. In low-salinity 
conditions, the dominant symbiotic Symbiodiniaceae 
subclades were Cladocopium C3d, followed by Clado-
copium Cspc. Notably, some corals were symbiotic with 
different symbiotic Symbiodiniaceae subclades when 
experienced low-salinity stress. For example, Cladoco-
pium Cspc and C3d were detected from M. peltiformis 
in low salinity conditions, but Cladocopium C3d and C2r 
were detected in normal salinity conditions. Research 
has observed that M. peltiformis has high susceptibility 
to environmental influences [45]. The flexible changes in 
the composition of symbiotic Symbiodiniaceae subclades 
may be conducive M. peltiformis to survive and adapt to 
low-salinity stress.

Coral symbiotic Symbiodiniaceae types are typically 
determined by environmental selection and co-evolution 
[71]. The results of this study showed that among the 
six coral species, some of them differed significantly in 
their Symbiodiniaceae diversity and composition. Coral 
holobionts can regulate physiological and ecological 
characteristics (e.g., coral host stress, Symbiodiniaceae 
densities, Symbiodiniaceae subclades, and bacterial com-
munities) to adapt to external environmental changes 
[72, 73]. The results suggest that different corals adapt 
to low salinity by regulating their symbiotic relationship 
with Symbiodiniaceae. Based on the phylogenetic tree 
of Symbiodiniaceae, two typical symbiotic Symbiodini-
aceae species selected by corals survived in low-salinity 
conditions. For example, the Symbiodiniaceae subclades 
of M. peltiformis belong to similar branches of the phy-
logenetic tree, and those of A. solitaryensis are distrib-
uted throughout the phylogenetic tree. This suggests that 
symbiotic Symbiodiniaceae may be regulated by corals 
in low-salinity conditions. Some coral species establish 
symbiotic relationships with specific Symbiodiniaceae 
subclades (e.g., Cladocopium C1) to increase their photo-
synthetic rate, and other coral species establish symbiotic 
relationships with multiple Symbiodiniaceae subclades to 
enhance their Symbiodiniaceae diversity and tolerance to 
low-salinity conditions.

Adaptation of coral‑bacterial holobionts to low‑salinity 
Pearl River Estuary condition
Salinity is a key factor influencing the diversity and 
composition of bacterial communities in coastal corals 

[74, 75]. Microbiome dynamics are linked to coral envi-
ronmental tolerance [76]. And a high diversity of the 
bacterial community may contribute to niche comple-
mentation and/or functional redundancy [23, 77]. In our 
study, six studied coral species suggested that the bacte-
rial communities associated with each of them showed 
significant differences in diversity and composition. Spe-
cifically, relatively high bacterial diversity was detected in 
the P. versipora, while relatively low bacterial diversity in 
the A. solitaryensis.

Compared with normal salinity environment, bacterial 
composition of different corals widely changed in low-
salinity environment [45, 46]. For example, M. peltiformis 
showed distinct changes in bacterial composition. At the 
phylum level, the bacteria associated with M. peltiformis 
were dominated by Cyanobacteria, with relative abun-
dances of 92.15% in normal salinity environment. At the 
genus level, the bacteria associated with M. peltiformis 
were dominated by Synechococcus CC9902 (89.16%) [45]. 
However, in low-salinity conditions, the dominant ASVs 
were Proteobacteria at the phylum level. At the genus 
level, u_Rhodobacteraceae were the dominant bacte-
ria. Synechococcus spp. is conducive coral holobiont to 
nitrogen fixation [78] and photosynthesis [79], indicating 
their potential roles in the hologenomic nutrient cycling 
of corals and the health state of coral hosts. Rhodobac-
teraceae may also enhance the resilience of corals by 
absorbing DMSP from Symbiodiniaceae and producing 
antibacterial compounds against pathogens [80]. Evi-
dently, low salinity can affect changes in the bacterial 
composition of corals, which further impacts the health 
of coral holobionts [45]. In contrast, the bacterial com-
position of G. fascicularis was relatively in stable. Under 
normal-salinity conditions, the relative abundances of 
γ-Proteobacteria, α-Proteobacteria, and Cyanobacteria 
of G. fascicularis were 20%, 12%, and 39% respectively, 
remaining at a relatively high level [46]. Under low-
salinity environment, Proteobacteria becomes were also 
the dominant bacteria, which is similar to the bacterial 
composition under normal conditions. This indicates a 
potential variation between the stability of the microbi-
ome and the susceptibility to bleaching among coral spe-
cies. The bacterial diversity might be important factors in 
coral adaptability to low-salinity conditions. Some coral 
species may survive better than others in low-salinity 
conditions by maintaining a high level of bacterial diver-
sity. Coral microbiome with high diversity may have high 
physiological and ecological acclimatization to low-salin-
ity conditions [81].

Community-associated bacterial communities have 
high flexibility and diverse functions and are closely 
related to the health of coral symbiotic functionaries. For 
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example, Proteobacteria and Bacteroidetes have a high 
tolerance to salinity stress [82]. In this study, bacteria 
from Proteobacteria and Bacteroidetes tended to domi-
nate the coral-associated communities, and their insen-
sitivity to salinity allowed these bacteria to survive better 
than other bacteria in low-salinity conditions. Rhodobac-
teraceae were highly abundant in all six coral species, and 
their ability to grow through photosynthesis, metabolize 
 CO2, and fix nitrogen plays an important role in the car-
bon and nitrogen cycles of marine ecosystems [83].

In this study, additional differences were observed in 
the relative abundances of bacterial phyla and genera, 
reflecting varying adaptability among coral species in 
low-salinity conditions. Coral-associated bacteria may 
be related to coral growth, nutrient metabolism, the 
immune system, antioxidant capacity, resilience, and 
tolerance [84, 85]. In our study, the coral microbial com-
munities in low-salinity areas revealed that Pseudoalte-
romonas was extremely abundant in some corals, such 
as P. daedalea. Pseudoalteromonas has been shown to 
have significant antagonistic effects on various patho-
gens [86]. In this study, Pseudoalteromonas and Vibrio 
were detected in the composition of coral-associated 
bacteria. Pseudoalteromonas may be conducive to inhibit 
the growth and reproduction of Vibrio via antagonism, 
potentially decreasing the risk of disease in corals [87]. 
Furthermore, a high abundance of Ruegeria was found 
in P. daedalea and M. peltiformis. Ruegeria is a potential 
probiotic coral that produces antibiotics that can inhibit 
the growth of Vibrio [88]. High abundance of Vibrio in 
low-salinity conditions may interfere with the associated 
relationship between corals and bacteria [89, 90]; the 
antagonistic effect of Pseudoalteromonas and the antibi-
otics produced by Ruegeria could be conducive to inhib-
iting the growth of Vibrio, maintaining the stability of the 
relationship and the mutual cooperation between corals 
and bacteria. Under low-salinity stress, the increased 
abundance of specific bacterial taxa may contribute to 
the health and survival of corals [91, 92].

Conclusions
Different coral species have different adaptations to 
low-salinity stress by regulating the diversity and com-
position of Symbiodiniaceae and bacteria. Some coral 
species improved their adaptation to low-salinity stress 
in the Pearl River Estuary based on a high diversity of 
symbiotic Symbiodiniaceae and associated bacteria. In 
contrast, some other coral species may increase their 
resistance by associating with specific Symbiodini-
aceae subclades, with high Symbiodiniaceae density, or 
minority bacterial dominance under low-salinity stress.
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