
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​
v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​​i​c​e​​n​s​e​s​​/​b​​y​-​n​c​-​n​d​/​4​.​0​/.

Cheng et al. BMC Microbiology          (2025) 25:275 
https://doi.org/10.1186/s12866-025-03995-5

BMC Microbiology

†Siyun Cheng, Xiaojie Chu and Zhongyu Wang contributed equally 
to this work.

*Correspondence:
Yue Tao
peachmoon@163.com
Han Shen
shenhan@njglyy.com
Ping Yang
pingyang@njglyy.com

Full list of author information is available at the end of the article

Abstract
Objective  This study aims to explore the relationship between gut microbiota and fecal metabolomic profiles 
in patients with systemic lupus erythematosus (SLE), with and without lupus nephritis (LN), in order to identify 
potentially relevant biomarkers and better understand their association with disease progression.

Methods  Fecal samples from 15 healthy controls (HC) and 36 SLE patients (18 SLE-nonLN and 18 SLE-LN) 
were analyzed using 16S rRNA gene sequencing and untargeted metabolomics. Differential microbial taxa and 
metabolites were identified using Linear Discriminant Analysis Effect Size (LEfSe) and Orthogonal Partial Least Squares 
Discriminant Analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Receiver Operating 
Characteristic (ROC) curve analyses were used to assess the potential clinical relevance of selected metabolites.

Results  Beta diversity analysis demonstrated distinct microbial clustering between groups (p < 0.05). SLE-LN 
samples showed an increased relative abundance of Proteobacteria and decreased Firmicutes compared to SLE-
nonLN. Metabolomic profiling identified multiple differentially abundant metabolites, with notable enrichment 
in primary bile acid biosynthesis pathways (e.g., Glycocholic acid, AUC = 0.951). In the SLE-nonLN group, increased 
Glycoursodeoxycholic acid levels (AUC = 0.922) were observed in pathways related to taurine and hypotaurine 
metabolism. Correlation analysis indicated a negative association between Escherichia-Shigella and bile acid levels 
(p < 0.01).
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Introduction
Systemic lupus erythematosus (SLE) is a chronic auto-
immune disorder characterized by the immune system’s 
aberrant attack on healthy tissues. Such dysregulation 
leads to systemic inflammation and multiorgan damage 
[1]. SLE manifests with heterogeneous clinical presen-
tations and variable disease severity, affecting multiple 
organs. The global prevalence of SLE ranges from 30 
to 50 cases per 100,000 individuals [2]. In China, the 
reported prevalence is 6.17 per 100,000 males and 67.78 
per 100,000 females [3]. Lupus nephritis (LN), a severe 
renal complication of SLE, is characterized by immune-
mediated kidney damage with diverse pathological types 
and significant clinical manifestations, making it one of 
the most serious forms of SLE [4, 5]. Despite extensive 
research, the underlying pathogenesis of LN remains 
incompletely understood. A primary goal in SLE man-
agement is preventing irreversible organ damage, which 
requires identifying key molecular contributors to dis-
ease progression [6]. Accurate diagnosis, timely inter-
vention, and early relapse management are crucial for 
effective LN treatment. Although renal biopsy is the gold 
standard for LN diagnosis, its invasiveness limits its util-
ity for continuous disease monitoring, underscoring the 
need for reliable non-invasive biomarkers [7, 8]. Current 
routine biomarkers, such as serum creatinine and com-
plement component C3b, have limited utility in assessing 
LN disease activity or facilitating real-time diagnosis [9].

Emerging evidence implicates the gut microbiota as a 
critical modulator of autoimmune processes, including 
SLE [10, 11]. Gut microbiota metabolize dietary compo-
nents into bioactive metabolites that modulate systemic 
immune responses [12]. Microbial metabolites, such 
as short-chain fatty acids and bile acids, are key media-
tors of host-microbiota interactions [13, 14]. For exam-
ple, Zhang et al. reported that fecal samples from SLE 
patients exhibited significantly elevated metabolic activi-
ties, including enhanced amino acid biosynthesis, vitamin 
B1 metabolism, nitrogen cycling, tryptophan degrada-
tion, and cyanoamino acid metabolism, compared to 
healthy controls [15]. However, single-omics approaches 
(e.g., metagenomics or metabolomics alone) fail to cap-
ture the complexity of disease mechanisms. Integrative 
analysis of gut microbiota and host metabolome dynam-
ics provides a holistic understanding of microbial and 
metabolic interactions in pathogenesis [16]. Despite 
progress in SLE metabolomic profiling, studies exploring 

microbiota-metabolome interplay, particularly in differ-
entiating SLE with nephritis (SLE-LN) from SLE without 
nephritis (SLE-nonLN), remain limited [17].

In this study, we applied 16S rRNA gene sequencing 
and liquid chromatography-tandem mass spectrometry 
(LC-MS/MS)-based untargeted metabolomics to ana-
lyze fecal samples from SLE patients (SLE-LN and SLE-
nonLN) and healthy controls (HC). Our objective was 
to identify potential biomarkers and explore gut micro-
biota-metabolome interactions to provide novel insights 
into the mechanisms underlying SLE pathogenesis and 
progression.

Materials and methods
Sample collection
We recruited 36 patients diagnosed with SLE from Nan-
jing Drum Tower Hospital, affiliated with Nanjing Uni-
versity Medical School. All patients were newly admitted 
and were not receiving immunosuppressive therapy at 
the time of sample collection. Diagnosis was based on 
the 1997 revised classification criteria of the American 
College of Rheumatology (ACR) and further confirmed 
through clinical evaluation, including serological markers 
and renal biopsy where applicable. The cohort consisted 
of 18 SLE-LN and 18 SLE-nonLN. Clinical character-
istics, including laboratory test results and medical his-
tory, were obtained from the hospital’s electronic medical 
records system. Additionally, 15 age-, gender-, and BMI-
matched HC were recruited from the hospital’s health 
examination center. These individuals had no prior his-
tory of autoimmune diseases, infections, metabolic disor-
ders, or malignancies. All participants provided written 
informed consent, and the study was approved by the 
Ethics Committee of Nanjing Drum Tower Hospital. 
Fecal samples were collected using sterile containers 
upon admission and immediately processed to maintain 
sample integrity. Each sample was divided into two ali-
quots and immediately stored at -80  °C for subsequent 
16S rRNA sequencing and untargeted metabolomics 
analysis. The overall study design is illustrated in Fig. 1.

DNA extraction and 16S rRNA sequencing
Total genomic DNA was extracted using the QIAamp 
DNA Stool Mini Kit (QIAGEN) with modifications, 
including an extended 10-minute bead-beating step to 
enhance the lysis of Gram-positive bacteria. DNA purity 
(A260/A280 ratio 1.8-2.0) and integrity were verified via 
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NanoDrop 2000 spectrophotometry and 1% agarose gel 
electrophoresis. The V3-V4 region of the 16 S rRNA gene 
was amplified using primers 341  F/806R under the fol-
lowing conditions: 98 °C for 1 min; 30 cycles of 98 °C for 
10 s, 55 °C for 30 s, 72 °C for 30 s; final extension at 72 °C 
for 5  min. PCR products were purified (AxyPrep DNA 
Gel Extraction Kit) and quantified (Qubit dsDNA Assay 
Kit). Equimolar pooled libraries were sequenced on an 
Illumina MiSeq PE300 platform (2 × 300  bp) in a single 
run to minimize batch effects.

Sequencing data processing and microbial diversity 
analysis
Raw sequencing reads were preprocessed using Cut-
adapt (v4.0) to trim adapters and remove low-quality 
bases. Quality filtering was performed with FASTP 
(v0.23.4), retaining reads with Phred scores ≥ 20 and 
lengths ≥ 200  bp. Paired-end reads were merged 

using FLASH (v1.2.11; min overlap = 20  bp, max mis-
match = 0.1). Further filtering steps were conducted to 
remove ambiguous bases (N), sequences with homopoly-
mer runs (> 8  bp), and chimeric reads using USEARCH 
(v11.0). Operational taxonomic units (OTUs) were 
de novo clustered at 97% similarity using VSEARCH 
(v2.21.1) and taxonomically assigned via the QIIME2 
Naïve Bayesian Classifier (v2023.2) against the SILVA 
142 database (confidence threshold = 80%). Alpha diver-
sity (Chao, Shannon, Simpson) was calculated after 
rarefaction to 10,000 reads/sample. Beta diversity was 
assessed using weighted/unweighted UniFrac distances 
and visualized via principal coordinate analysis (PCoA) 
and non-metric multidimensional scaling (NMDS). Lin-
ear discriminant analysis Effect Size (LEfSe) analysis was 
performed using Python (v3.9.7) to identify differentially 
abundant taxa, applying significance thresholds of 0.05 

Fig. 1  Grouping Design and Analysis Flowchart
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for both the Kruskal-Wallis and Wilcoxon tests, and an 
LDA score threshold of 4.

Metabolite extraction and LC-MS/MS analysis
Fecal metabolites were extracted by homogenizing 20 mg 
of sample with 400 µL methanol: water (7:3, v/v) on ice. 
After sonication (10 min), vortexing (1 min), and centrif-
ugation (12,000 × g, 10 min, 4 °C), 200 µL of supernatant 
was analyzed via LC-MS/MS (Waters ACQUITY UPLC 
HSS T3 C18 column, 1.8 μm, 2.1 × 100 mm). The mobile 
phase consisted of 0.1% formic acid in water (solvent A) 
and acetonitrile (solvent B), with a gradient elution (0.4 
mL/min): 0–11  min, 5–90% B; 12–14  min, 5% B. Raw 
data were converted to mzML format using ProteoWiz-
ard version 3.0.23136. Peak detection and retention time 
alignment were performed using XCMS (v4.7). Metabo-
lites were identified through our in-house database and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
online database.

Statistical analysis
Constrained Principal Coordinate Analysis (CPCoA) 
was performed using the prcomp function in R (v4.2.3). 
Hierarchical clustering analysis was conducted with the 

ComplexHeatmap package, and results were visualized as 
heatmaps with dendrograms. Normalized signal intensi-
ties of metabolites were displayed as color spectra follow-
ing unit variance scaling. Differential metabolites were 
defined by VIP ≥ 1, |Log2FC|≥1, and p < 0.05. Data were 
log2-transformed and mean-centered prior to orthogonal 
partial least squares discriminant analysis (OPLS-DA). 
Functional and pathway analysis was conducted using the 
KEGG database, with pathways considered significantly 
enriched at p < 0.05.

Results
Altered microbiota composition among groups
The DNA from fecal samples of 15 HC, 18 SLE-nonLN, 
and 18 SLE-LN patients was examined using 16 S rRNA 
gene sequencing. Species accumulation curves (Fig. 
S1) and rarefaction curves (Fig. S2) indicated sufficient 
sequencing depth and coverage. To assess bacterial diver-
sity differences across the three groups, both within-sam-
ple (alpha) and between-sample (beta) diversity metrics 
were calculated. No significant differences in ACE, Chao, 
Shannon, and Simpson indices were observed among 
the HC, SLE-nonLN, and SLE-LN groups (Fig.  2A-D), 
suggesting a lack of significant variations in microbial 

Fig. 2  Alpha diversity analysis across HC, SLE-nonLN, and SLE-LN groups. The ACE (A), Chao (B), Shannon (C), and Simpson (D) indices represent different 
measures of bacterial diversity among the three groups
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richness or diversity. In contrast, beta diversity analysis 
using CPCoA and NMDS demonstrated distinct cluster-
ing patterns between SLE groups (nonLN, LN) and HC 
(Fig. S3A-B). These findings suggest that although alpha 
diversity differences were not significant, SLE influenced 
gut microbiota composition.

Altered microbial composition associated with SLE
At the phylum level, Firmicutes was the predominant 
phylum in all groups, with a significantly higher relative 
abundance in SLE-nonLN (59.08%) compared to HC 
(49.35%) and SLE-LN (39.50%, Fig. 3A). Conversely, Pro-
teobacteria abundance was markedly elevated in SLE-LN 
(28.02%) versus SLE-nonLN (12.93%) and HC (23.18%). 
At the genus level, the relative abundance of Faeca-
libacterium was highest in the HC group (10.31%) and 
progressively declined in the SLE-nonLN and SLE-LN 
groups (4.06% and 1.90%, respectively). Conversely, Bac-
teroides abundance was lower in the HC group (9.57%) 
and increased in the SLE-nonLN and SLE-LN groups 
(11.26% and 14.73%, respectively). Compared to the HC 
group, the genera Blautia decreased, whereas Streptococ-
cus, Enterococcus, Akkermansia, and Lactobacillus were 
enriched in both the SLE-nonLN and SLE-LN groups 
(Fig. 3B).

LEfSe analysis among groups
LEfSe identified 27 differentially abundant taxa across 
groups (LDA > 4, p < 0.05), with 6 taxa enriched in the 
SLE-nonLN group, 11 in the SLE-LN group, and 10 in 
the HC group. SLE-nonLN was characterized by Bacilli 
and Lactobacillales, while SLE-LN showed enrichment 
of Enterobacteriaceae, Enterobacterales, Proteobacte-
ria, Gammaproteobacteria, Escherichia_Shigella, and 

Escherichia_coli (LDA score > 4.7). HC exhibited higher 
Clostridia abundance (Fig.  4A-B). Pairwise compari-
sons confirmed Enterobacter as the most distinct genus 
among groups (Kruskal-Wallis p < 0.001; Fig. S4), with 
Escherichia-Shigella significantly differentiating SLE-LN 
from SLE-nonLN (p = 0.0208, Fig. S5).

Changes in metabolome and key metabolites
Gut microbial metabolites play a crucial role in modulat-
ing host physiological functions. To characterize meta-
bolic alterations among HC, SLE-nonLN, and SLE-LN 
groups, metabolite abundance in fecal samples was ana-
lyzed using LC-MS. Untargeted metabolomics revealed 
distinct clustering among HC, SLE-nonLN, and SLE-LN 
groups via OPLS-DA, with clear separation between 
groups (Fig. 5A). Permutation tests validated the model’s 
robustness, with the Y-intercept of the regression line for 
Q² values below zero (R2Y = 0.995, Q2 = 0.788; Fig.  5B). 
A total of 177 metabolites were differentially abundant 
in HC vs. SLE-LN, 159 in HC vs. SLE-nonLN, and 94 
in SLE-nonLN vs. SLE-LN (VIP ≥ 1, p < 0.05, |Log2FC| 
≥1). Differential metabolites were identified based on 
the OPLS-DA model and visualized using volcano plots 
(Fig. 5C). 

Metabolic pathways analysis
Pearson correlation analysis of the top 50 differential 
metabolites (ranked by VIP scores) revealed distinct 
co-regulation patterns among HC, SLE-nonLN, and 
SLE-LN groups (Fig. S6). KEGG pathway enrichment 
analysis identified taurine and hypotaurine metabolism 
as the most significantly altered pathway in SLE-nonLN 
vs. HC, followed by primary bile acid biosynthesis 
and histidine metabolism (Fig.  6A). In SLE-nonLN vs. 

Fig. 3  Altered gut microbiota composition among HC, SLE-nonLN, and SLE-LN groups. (A) Relative abundances at the phylum level. (B) Relative abun-
dances at the genus level
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SLE-LN comparisons, key pathways included primary 
bile acid biosynthesis, thiamine metabolism, and sul-
fur metabolism (Fig. 6B). After excluding metabolites of 
dietary or pharmaceutical origin (e.g., Hydroxychloro-
quine, Myristoleic acid, Polygodial, Furosemide), seven 
metabolites were consistently altered across all groups 
(Table  1). Heatmap analysis highlighted three metabo-
lites—Glycocholic acid, Glycochenodeoxycholic acid, 
and 5,8,11-Eicosatrienoic acid—that were dysregulated 
in both HC vs. SLE-nonLN and SLE-nonLN vs. SLE-LN 
comparisons (Fig. S7).

Identification of metabolite biomarkers to distinguish 
SLE-LN from SLE-nonLN
Receiver operating characteristic (ROC) was con-
ducted to evaluate the discriminatory power of key 

metabolites in distinguishing SLE-LN from SLE-nonLN. 
Seven differential metabolites involved in major meta-
bolic pathways were assessed, revealing that Glyco-
cholic acid (AUC = 0.951), Glycochenodeoxycholic acid 
(AUC = 0.827), Oxypurinol (AUC = 0.769), Methylsuc-
cinic acid (AUC = 0.685) and 5,8,11-Eicosatrienoic acid 
(AUC = 0.716) exhibited varying degrees of classification 
accuracy between SLE-nonLN and SLE-LN (Fig.  7A-E). 
Among them, Glycocholic acid and Glycochenodeoxy-
cholic acid exhibited the strongest predictive capability. 
For SLE-nonLN vs. HC discrimination, Glycine deoxy-
cholic acid (AUC = 0.844) and Glycochenodeoxycholic 
acid (AUC = 0.922) exhibited high accuracy, whereas 
Soyasaponin I (AUC = 0.689) showed limited utility (Fig. 
S8).

Fig. 4  Microbial community analysis using LEfSe. (A) Histogram of LDA scores showing differentially abundant microbial taxa (LDA score > 4). (B) Clado-
gram depicting specific differential taxa
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Correlation between microbiota and metabolites
Spearman’s correlation analysis between the top 16 
microbial genera and key metabolites revealed signifi-
cant associations. The correlation heatmap (Fig.  8A) 
highlighted key relationships: Escherichia-Shigella and 
Enterobacter abundances were negatively correlated with 
bile acids (Glycochenodeoxycholic acid and Glycocholic 
acid), but positively correlated with 5,8,11-eicosatrienoic 
acid. Additionally, Bacteroides, Faecalibacterium, and 
Parabacteroides were positively correlated with Methyl-
succinic acid, indicating potential metabolic interactions. 
Notably, Escherichia-Shigella was inversely associated 
with Glycochenodeoxycholic acid, Glycocholic acid and 
Stachydrine in HC vs. SLE-nonLN comparisons, while 
Streptococcus correlated positively with Glycocholic acid 
(Fig.  8B). Furthermore, Soyasaponin I demonstrated 
a negative correlation with Subdoligranulum, Agatho-
bacter, and Faecalibacterium, while showing a significant 
positive correlation with Erysipelatoclostridium (p < 0.01). 
These findings suggest that alterations in gut microbial 
composition significantly impact host metabolic profiles, 

particularly in the regulation of bile acid metabolism. 
Notably, key genera such as Escherichia-Shigella and 
Enterobacter appear to contribute substantially to bile 
acid synthesis, further underscoring their potential role 
in SLE pathogenesis.

Discussion
SLE is a chronic autoimmune disease that primarily 
affects young women and leads to systemic inflamma-
tion. LN, a severe renal complication of SLE, significantly 
worsens patient prognosis [18]. While our previous work 
identified tRNA-derived small noncoding RNAs (tsR-
NAs) as potential biomarkers for LN [19, 20], the gut 
microbiota-metabolome axis remains underexplored 
in SLE progression. In the present study, we integrated 
16S rRNA sequencing with untargeted metabolomics to 
explore gut microbial and metabolic alterations across 
different stages of SLE. Our findings reveal stage-specific 
microbiota and metabolite patterns, which may provide 
new insights into SLE pathophysiology and support the 
identification of non-invasive biomarkers.

Fig. 5  Metabolic profile analysis. (A) OPLS-DA score plot demonstrating significant differences in metabolic profiles among groups. (B) Permutation test 
for model validation. The x-axis represents the correlation coefficient, and the y-axis represents the predictive performance of the model. (C) Volcano 
plot of differential metabolites. The x-axis denotes the groups, while the y-axis represents the log₂ fold change of metabolites. Metabolites upregulated 
in each group are shown in red 
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The gut microbiota, functioning as a dynamic “vir-
tual organ,” plays pivotal roles in immune regulation, 
metabolic homeostasis, and barrier integrity [21]. In our 
study, alpha-diversity metrics remained stable in SLE-
nonLN compared to HC, whereas beta-diversity analysis 
revealed significant compositional shifts between SLE 
groups and HC. These results suggest that alterations in 
microbial composition, rather than overall richness, may 
be associated with disease status. Further subgroup com-
parisons revealed differing microbial patterns between 
SLE-nonLN and SLE-LN, with SLE-LN characterized 
by an increased abundance of taxa previously linked to 
inflammatory phenotypes.

At the phylum level, we observed a shift from Fir-
micutes to Proteobacteria during disease progression. 
Firmicutes were predominant in SLE-nonLN (59.08%), 
while Proteobacteria were significantly enriched in 
SLE-LN (28.02%). This contrasts with a Spanish cohort 
reporting Bacteroidetes enrichment in SLE [22], likely 
reflecting geographic and dietary influences on micro-
bial ecology. The depletion of Firmicutes (particularly 
butyrate-producing Faecalibacterium) and enrichment 
of Proteobacteria (e.g., Escherichia-Shigella) in SLE-LN 
may contribute to gut barrier dysfunction, permitting 
translocation of pro-inflammatory metabolites (e.g., lipo-
polysaccharides) into systemic circulation—a mechanism 

Table 1  Metabolites with intergroup differences in fecal samples
Compounds Class HC vs. SLE-nonLN SLE-nonLN vs. SLE-LN

VIP FC p Trend VIP FC p Trend
Glycocholic acid Bile acids 2.99 5.06 0.00 ↑ 3.10 0.37 0.00 ↓
5,8,11-Eicosatrienoic acid Fatty Acyls 1.66 0.31 0.01 ↓ 1.80 3.11 0.00 ↑
Stachydrine Amino acid and Its metabolites 1.23 4.31 0.03 ↑ — — — —
Glycine deoxycholic acid Organic acid And Its derivatives 1.83 11.02 0.04 ↑ — — — —
Glycochenodeoxycholic acid Bile acids 2.52 8.88 0.00 ↑ 2.56 0.28 0.01 ↓
Methylsuccinic acid Organic acid And Its derivatives — — — — 1.06 0.35 0.02 ↓
Palmitoylcarnitine Alkaloids — — — — 1.28 2.78 0.03 ↑
Ursocholic acid Bile acids — — — — 1.41 6.95 0.02 ↑
Oxypurinol Heterocyclic compounds — — — — 1.54 0.15 0.04 ↓
Notes: ↑ Represents upregulation of metabolite; ↓ represents downregulation of metabolite

Abbreviations: VIP, variable importance in the projection; FC, fold change

Fig. 6  KEGG pathway enrichment analysis. KEGG pathway enrichment analysis highlighting major metabolic pathways affected in (A) HC vs. SLE-nonLN 
and (B) SLE-nonLN vs. SLE-LN comparisons. The y-axis lists the enriched pathways, while the x-axis represents the enrichment factor (ratio of significantly 
altered metabolites to total metabolites in a given pathway). The bubble size corresponds to the number of enriched metabolites, whereas the color 
gradient denotes statistical significance, with darker shades indicating higher significance
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implicated in LN-related renal inflammation [23]. Simi-
lar phylum-level dysbiosis patterns observed in systemic 
sclerosis and rheumatoid arthritis further support the 
potential involvement of these taxa in autoimmune dys-
regulation [24–26].

LEfSe analysis further delineated key taxonomic dif-
ferences. Class Bacilli and order Lactobacillales were 
enriched in SLE-nonLN, whereas SLE-LN samples 
showed a predominance of Enterobacteriaceae and Gam-
maproteobacteria. These findings are consistent with 
previous reports indicating increased fecal Lactobacillus 
abundance in SLE patients [27, 28]. Notably, preclini-
cal models have demonstrated strain-specific effects of 
Lactobacillus spp., with L. reuteri exhibiting protective 
immunomodulatory effects [29], while other strains may 
exacerbate autoimmunity [30]. In our cohort, the consis-
tent enrichment of Enterobacteriaceae, Enterobacterales, 
and Escherichia-Shigella in SLE-LN (LDA > 4.7, p < 0.05) 
underscores the potential contribution of these taxa to 
disease severity. While the exact mechanisms remain to 
be elucidated, their expansion in LN patients suggests 
they may serve as markers of microbial dysbiosis associ-
ated with disease progression [31, 32].

Metabolomics, with its high resolution and sensitivity, 
has emerged as a powerful tool for unraveling disease-
specific metabolic perturbations [33, 34]. Our untar-
geted fecal metabolomics analysis identified profound 
alterations in lipid and amino acid metabolism across 
SLE stages, underscoring their pivotal roles in disease 
progression. Notably, Mead acid (5,8,11-Eicosatrienoic 
acid), a biomarker of essential fatty acid deficiency [35, 
36], was significantly elevated in SLE-LN compared to 
SLE-nonLN (FC = 3.11, p = 0.004). Elevated Mead acid 
levels, often indicative of a deficiency in dietary essen-
tial fatty acids, particularly arachidonic acid, may con-
tribute to autoimmune disease progression [37]. These 
findings align with Zhang et al.’s report of Mead acid as 
a prognostic marker in LN [38], suggesting its potential 
utility for identifying SLE patients at higher risk of renal 
involvement.

Changes in lipid metabolism are closely associated with 
lipid-induced nephrotoxicity and play a significant role 
in SLE-LN pathophysiology. Bile acids, essential regula-
tors of lipid metabolism, mediate this process through 
TGR5 modulation [39]. Previous studies have reported 
correlations between specific bile acids—including 

Fig. 7  ROC analysis of potential biomarkers distinguishing SLE-LN and SLE-nonLN. (A) Glycocholic acid, (B) Methylsuccinic acid, (C) Oxypurinol, (D) 
5,8,11-Eicosatrienoic acid, (E) Glycochenodeoxycholic acid
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Glycocholic acid and Glycochenodeoxycholic acid—and 
SLE disease activity [40]. In our cohort, both metabolites 
were significantly elevated in SLE-nonLN compared to 
HC (FC = 5.06 and 8.88, respectively), suggesting poten-
tial involvement in early-stage disease. These elevations 
may be linked to dysregulation of primary bile acid bio-
synthesis and lipid handling in SLE [41]. Interestingly, 
both bile acids showed markedly reduced levels in SLE-
LN (FC = 0.37 and 0.28, respectively), implying a shift in 
bile acid metabolism during disease progression. While 
ROC analysis indicated high classification performance 
for these metabolites in distinguishing SLE subgroups 
(AUC = 0.951 and 0.827), their diagnostic utility warrants 
further validation in larger, independent cohorts. These 
findings support the relevance of bile acid metabolism in 
SLE and highlight Glycocholic acid and Glycochenode-
oxycholic acid as promising candidates for non-invasive 
monitoring of disease progression [42].

Beyond lipid dysregulation, we observed stage-specific 
shifts in amino acid metabolism. SLE-nonLN patients 
exhibited elevated fecal levels of glucogenic amino 
acids (e.g., glycine, proline), indicative of a metabolic 

shift toward gluconeogenesis—a potential adaptation 
to chronic inflammation-induced energy demands [43]. 
In contrast, glycine and proline levels were reduced in 
SLE-LN patients compared to those with SLE-nonLN. 
This reduction was accompanied by distinct shifts in gut 
microbial composition, suggesting a potential association 
between amino acid metabolism and the progression of 
disease. Among the taxa showing the most notable dif-
ferences across the groups were Escherichia-Shigella 
and Enterobacter, both of which were significantly more 
abundant in the SLE-LN group (p < 0.001). Escherichia-
Shigella exhibited a negative correlation with bile acid 
metabolites, including Glycochenodeoxycholic acid 
and Glycocholic acid, across all three groups. Similarly, 
Enterobacter was negatively correlated with nearly all 
differential metabolites, such as Pterine, L-cysteine, and 
Glycoursodeoxycholic acid, which are strongly associ-
ated with bile acid biosynthesis and thiamine metabo-
lism pathways. These findings suggest that the expansion 
of these microbial taxa may contribute to alterations in 
host metabolic pathways linked to disease severity. Nev-
ertheless, further experimental studies are needed to 

Fig. 8  Spearman correlation analysis between gut microbiota and differential metabolites. (A) Correlation analysis in SLE-nonLN and SLE-LN groups. (B) 
Correlation analysis in HC and SLE-nonLN groups. The x-axis represents differential metabolites, while the y-axis denotes bacterial genera identified at 
the 16 S rRNA gene level. Red indicates a positive correlation, whereas blue represents a negative correlation. Asterisks indicate statistical significance: 
*p < 0.05, **p < 0.01
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confirm these associations and clarify the underlying 
mechanisms.

However, this study has several limitations. The rela-
tively small sample size reduces the statistical power of 
subgroup analyses and may limit the generalizability of 
our findings. Additionally, although participants were 
newly admitted and not receiving immunosuppres-
sive therapy at the time of sampling, it was not feasible 
to completely rule out prior medication effects, which 
may have impacted the gut microbiota and metabo-
lome. Future studies should incorporate larger and more 
diverse patient cohorts, including those with other auto-
immune or inflammatory conditions, to validate and 
expand upon these findings. Longitudinal analyses are 
also warranted to explore dynamic changes in microbi-
ome–metabolome interactions throughout the course of 
SLE and LN progression.

Conclusion
This study identified distinct alterations in gut microbi-
ota composition and fecal metabolite profiles in patients 
with SLE, particularly those with LN. SLE was associated 
with increased Firmicutes and decreased Proteobac-
teria, while SLE-LN showed enrichment of potentially 
pro-inflammatory taxa such as Enterobacteriaceae (e.g., 
Escherichia-Shigella), which may be linked to renal 
inflammation. Metabolomic profiling revealed stage-spe-
cific metabolic shifts, including elevated levels of Mead 
acid and reduced concentrations of key bile acids such 
as Glycocholic acid and Glycochenodeoxycholic acid in 
SLE-LN patients. Notably, the abundance of Escherichia-
Shigella was inversely correlated with key bile acid levels, 
suggesting possible microbiota–metabolite interactions 
relevant to LN progression. While causal relationships 
cannot be inferred, these findings may enhance our 
understanding of the microbiome–metabolome axis in 
SLE and support the potential use of non-invasive bio-
markers for monitoring and stratifying disease severity.
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