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Abstract
Antibiotic resistance (AR) has emerged as a significant global health issue. Wastewater treatment plants (WWTPs) 
contain diverse bacterial communities, including pathogens, and have been identified as crucial reservoirs for 
the emergence and dissemination of AR. The present study aimed to identify antibiotic resistance genes (ARGs) 
and screen for the presence of mutations associated with AR in Legionella pneumophila and Aeromonas spp. from 
municipal wastewater. Metagenome-assembled genomes (MAGs) of L. pneumophila and Aeromonas spp. were 
reconstructed to investigate the molecular mechanisms of AR in these organisms. A total of 138 nonsynonymous 
single nucleotide variants (SNVs) in seven genes associated with AR and one deletion mutation in the lpeB gene 
were identified in L. pneumophila. In Aeromonas spp., two (aph(6)-Id and aph(3’’)-Ib) and five (blaMOX−4, blaOXA−1143, 
blaOXA−724, cepH, and imiH) ARGs conferring resistance to aminoglycosides and β-lactams were identified, 
respectively. Moreover, this study presents β-lactam resistance genes, blaOXA−1143 and blaOXA−724, for the first time 
in Aeromonas spp. from a municipal WWTP. In conclusion, these findings shed light on the molecular mechanisms 
through which clinically relevant pathogenic bacteria such as L. pneumophila and Aeromonas spp. found in natural 
environments like municipal wastewater acquire AR.
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Introduction
Antibiotic resistance (AR) has increased significantly, 
primarily due to the excessive and inappropriate use of 
antibiotics in clinical and veterinary settings, increased 
infection rates, and inadequate hygiene and disinfection 
practices [1]. Historically, clinical settings were believed 
to be the primary reservoir of antibiotic-resistant bac-
teria (ARB) and antibiotic resistance genes (ARGs) [2]. 
However, ARB and ARGs have recently become ubiq-
uitous contaminants in other environments including 
wastewater treatment plants (WWTPs) [2, 3]. Numerous 
studies have implicated WWTPs as key reservoirs and 
sources of AR in the environment [2, 4]. As such, differ-
ent AR types and subtypes of almost all ARGs are con-
sistently detected in different types of wastewaters [5, 6].

Legionella spp. are gram-negative fastidious aerobic 
bacteria found ubiquitously in natural and artificial water 
systems, including WWTPs. Legionella pneumophila 
is the causative agent of severe atypical pneumonia also 
called Legionnaires’ disease (LD), as well as an acute 
febrile illness known as Pontiac fever [7]. This organ-
ism is responsible for up to 90% of the reported LD 
cases worldwide, with most of these cases attributed to 
L. pneumophila serogroup 1 [7]. Macrolide and fluoro-
quinolone antibiotics (usually azithromycin and levo-
floxacin, respectively) are currently recommended for 
moderate and severe LD [8]. Despite AR historically not 
being a primary concern in Legionella infections, recent 
reports have identified resistance to first-line drugs in 
clinical strains and documented instances of treatment 
failure in patients [9, 10]. These findings highlight the 
possibility of reduced efficacy and the emergence of resis-
tance to traditional therapies. Jia et al. (2019) reported 
that an efflux pump component (lpeAB) primarily confers 
azithromycin resistance in L. pneumophila [10]. Through 
sequencing approaches, several resistance mediat-
ing mechanisms have been revealed in L. pneumophila, 
including enzymatic modifications and mutations in 
genes encoding 23S rRNA, DNA gyrase and topoisomer-
ase IV, as well as ribosomal accessory proteins [11, 12].

The genus Aeromonas comprises gram-negative rod-
shaped bacteria commonly found in diverse aquatic habi-
tats such as rivers, drinking water, wastewater, soil, and 
animals. Members of this genus have been implicated in a 
wide range of human diseases, including gastroenteritis, 
wound infections, and bacteremia [13]. Notably, Aeromo-
nas spp. serve as reservoirs of ARGs in aquatic settings 
[13]. Moreover, members of the genus Aeromonas har-
bour a plethora of AR determinants located on mobile 
genetic elements, including plasmids, transposons, inte-
grons, and genomic islands, facilitating the horizontal 
transfer of ARGs even to phylogenetically distant bac-
terial species [14]. Notwithstanding the significance of 
Aeromonas in the dissemination of AR, few studies have 

characterised the genotypic profiles of AR determinants 
in Aeromonas species within WWTP environments [15, 
16]. Understanding these genotypic profiles is crucial, 
as it provides valuable insights into the mechanisms by 
which ARGs are disseminated in WWTPs and implica-
tions for WWTP workers’ health.

In 2019, it was approximated that antimicrobial resis-
tant infections led to nearly 1.27 million deaths globally 
[17]. Moreover, forecasts indicate that by 2050, AR could 
result in 10  million deaths annually and a 3.8% decline 
in the global gross domestic product (GDP) [18]. There-
fore, efforts to identify the emergence and spread of AR 
require a broader and non-invasive approach, especially 
in countries with limited resources and poor surveil-
lance strategies [19]. Antibiotic-resistant bacterial species 
that are commonly studied in WWTPs predominantly 
include culturable enteric bacteria such as Klebsiella 
pneumoniae, Enterobacteriaceae, Escherichia coli, Citro-
bacter spp., and Serratia spp [3, 20]. However, culture-
dependent methods have drawbacks, as only 1% of total 
environmental bacteria are culturable. Additionally, 
some of these bacteria are fastidious or slow growing and 
are thus difficult to characterise using culture methods 
[21]. While L. pneumophila is an established pathogen, 
Aeromonas is emerging as a potential public health con-
cern because of its presence in water systems and resis-
tance to multiple antibiotics [13, 14]. Therefore, the aim 
of this study was to characterise metagenome-assembled 
genomes (MAGs) of L. pneumophila, and Aeromonas 
spp. from municipal wastewater and identify their AR 
genotypes. Additionally, this study investigated the pres-
ence of spontaneous mutations in select ARGs known to 
confer resistance to commonly used antimicrobial drugs 
in L. pneumophila. To the best of our knowledge, this is 
the first study to perform genome analysis of wild-type 
L. pneumophila detected from municipal wastewater to 
better understand the potential health risks of environ-
mental pathogenic organisms with no link to outbreaks 
or clinical cases.

Materials and methods
Wastewater sample collection and culture
Wastewater samples were collected from municipal 
WWTPs in Tshwane, South Africa. The characteris-
tics of the sampling sites were previously described by 
Poopedi et al. (2023), see Supplementary Table S1 [22]. 
Sampling sites were selected based on treatment capac-
ity, representing small (WWTP1: 35 mega litres per day 
(ML/day)), medium (WWTP1: 60 ML/day), and large 
(WWTP3: 93 ML/day) WWTPs. Additional selection 
criteria included the use of surface aeration technology, 
proximity to the laboratory, and willingness of site man-
agement to participate in the study. The Legiolert method 
(IDEXX Laboratories, Inc., Westbrook, U.S.) was used 
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to analyse 1 mL of wastewater in accordance with the 
manufacturer’s instructions specified for non-portable 
water. The details of the wastewater samples are outlined 
in Table 1.

DNA extraction
The positive Legiolert trays were decontaminated with 
70% ethanol, and the contents of the wells were extracted 
with a sterile disposable syringe (Merck, Darmstadt, Ger-
many). The contents were placed into a 50 mL centrifuge 
tube and concentrated for 45  min at 5000  rpm (Eppen-
dorf, Hamburg, German). Genomic DNA was then 
extracted from the pellet biomass using a DNeasy Pow-
ersoil Kit (Qiagen, Hilden, Germany) as per the manufac-
turer’s instructions.

Sequencing, metagenome-assembled genomes (MAGs) 
assembly and taxonomic annotation
Sequencing was conducted at the Biotechnology Plat-
form of the Agricultural Research Council in Onder-
stepoort, South Africa, using the MGI DNBSEQ-G400 
sequencing platform according to the manufacturer’s 
instructions, with 150 bp paired-end reads specified. Raw 
data were subjected to quality control, including adapter 
removal using BBDuk v.38.91 ( h t t p  s : /  / j g i  . d  o e .  g o v  / d a t  a -  a 
n d  - t o  o l s /  s o  f t w  a r e  - t o o  l s  / b b  t o o  l s / b  b -  t o o  l s -  u s e r  - g  u i d e / b 
b d u k - g u i d e / ; s o u r c e f o r g e . n e t / p r o j e c t s / b b m a p /). De novo 
assembly of individual samples was performed with 

metaSPAdes v.3.15.3 [23], and only assembled contigs 
exceeding 1,500 bp were retained for subsequent analy-
sis. The resulting contigs were then grouped into MAGs 
using Metabat v.2.15 [24]. Evaluation of MAG complete-
ness and contamination was performed using CheckM 
v.1.1.3 [25], and only MAGs with completeness ≥ 50% 
and contamination ≤ 10% (classified as medium to high 
quality MAGs) were retained for further analyses [26]. 
Taxonomic classification of the MAGs using the Genome 
Taxonomy Database-Tk v.1.7.0 [27] identified Legionella 
pneumophila and Aeromonas species among the assem-
bled genomes.

Antibiotic resistance genes and point mutations
Genome assemblies were assessed using the National 
Center for Biotechnology Information (NCBI) AMRFind-
erPlus ( h t t p  s : /  / g i t  h u  b . c  o m /  t s e e  m a  n n / a b r i c a t e) for the in 
silico prediction of ARGs. This analysis identified ARGs 
in both Legionella pneumophila and Aeromonas species 
MAGs. The presence of the AR-associated genes lpeA, 
lpeB, rplD, rplV, rrl/23 rRNA, gyrA, gyrB, parC, parE 
and rpoB in the assembled L. pneumophila MAGs was 
screened using BLASTn querying the L. pneumophila 
strain Paris (NC_006368). The obtained gene sequences 
were subsequently aligned via multiple sequence align-
ment with the reference strain using Clustal Omega ( h t t p  
s : /  / w w w  . e  b i .  a c .  u k / j  d i  s p a  t c h  e r / m  s a  / c l u s t a l o). BioEdit [28] 
was used to perform and visualise the alignments. Amino 
acid changes were determined by translating the nucleo-
tide sequences using the bacterial genetic code table (E. 
coli numbering system).

Results
General features of the recovered metagenome-assembled 
genomes (MAGs)
Table  2 summarises the general characteristics of the 
MAGs classified as L. pneumophila and Aeromonas spp. 
In this study, high quality MAGs were recovered, defined 
by a completeness exceeding 50% and contamination 

Table 1 Sources and type of wastewater used in this study
Sample ID Source Sampling point Collection date
WP1INF4 WWTP1 Bar screen 30 November 2021
WP1INF9 WWTP1 Bar screen 30 November 2021
WP2AS8 WWTP2 Aeration tank 11 January 2022
WP2SST1 WWTP2 Secondary settling 

tank effluent
25 January 2022

WP3INF4 WWTP3 Bar screen 16 November 2021
WP3INF2 WWTP3 Bar screen 16 November 2021
WP3AS1 WWTP3 Aeration tank 08 February 2022

Table 2 Features of metagenome-assembled genomes (MAGs) classified as L. pneumophila and Aeromonas spp
Features L. pneumophila A. caviae A. hydrophila
Sampling point Bar screen Aeration tank SST effluent Bar screen Bar screen Bar screen Aeration tank
Sampling site WWTP1 WWTP2 WWTP2 WWTP3 WWTP1 WWTP3 WWTP3
Sample ID WP1INF4 WP2AS8 WP2SST1 WP3INF4 WP1INF9 WP3INF2 WP3AS1
Average coverage 548X 333X 1704X 710X 12X 64X 360X
Completeness (%) 95 99 99 99 95 69 59
Contamination (%) 0,19 0,19 0,19 0,19 0,00 0,00 0,00
Size (bp) 3,177,878 3,435,984 3,335,074 3,295,813 4,245,992 3,782,452 3,046,587
No. of Contigs 60 35 18 19 87 125 315
N50 101,252 160,164 341,210 278,643 85,178 50,913 14,488
GC (%) 38,2 38,2 38,2 38,2 61,9 62,3 62,2
No. of predicted genes 2,838 3,069 3,005 2,961 3,895 2,962 3,512
Note: ID: identification, bp: base pair, GC: guanine cytosine, %: percentage, SST: secondary settling tank

https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/bbduk-guide/;sourceforge.net/projects/bbmap/
https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/bbduk-guide/;sourceforge.net/projects/bbmap/
https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/bbduk-guide/;sourceforge.net/projects/bbmap/
https://github.com/tseemann/abricate
https://www.ebi.ac.uk/jdispatcher/msa/clustalo
https://www.ebi.ac.uk/jdispatcher/msa/clustalo


Page 4 of 9Poopedi et al. BMC Microbiology          (2025) 25:237 

below 10%. Specifically, MAGs classified as L. pneu-
mophila had completeness ranging from 95 to 99%, with 
contamination levels of less than 1%. Similarly, MAGs 
classified as Aeromonas spp. had completeness ranging 
from 59 to 95%, with no contamination (0%). The high 
level of completeness observed in these MAGs was con-
sistent with high sequencing coverage achieved, high-
lighting the reliability of the genomic reconstructions.

The genome sizes of the WP1INF4, WP2AS8, 
WP2SST1, WP3INF4 L. pneumophila MAGs were 
approximately 3.18, 3.44, 3.34, and 3.30 Mbp, respec-
tively, with identical low genomic G + C contents of 
38.2% in all sequences. The assembled sequences of 
L. pneumophila WP1INF4, WP2AS8, WP2SST1, and 
WP3INF4 yielded 60, 35, 18, and 19 contigs with N50 
values of 101,252, 160,164, 341,210, and 278,643, respec-
tively. In addition, L. pneumophila WP1INF4, WP2AS8, 
WP2SST1, and WP3INF4 each had 2,838, 3,069, 3,005, 
and 2,961 predicted genes, respectively.

The sizes of the Aeromonas caviae MAGs WP1INF and 
WP3INF2 genomes were approximately 4.24 and 3.78 
Mbp, with G + C contents of 61.9 and 62.3%, respectively. 
The assembly produced 145 and 87 contigs with N50 val-
ues of 85,178 and 50,913 in the A. caviae WP1INF and 
WP3INF2 genomes, respectively. The predicted gene 
counts for the two A. caviae genomes were 3,895 and 
2,962. The genome of A. hydrophila MAGs had the fol-
lowing features: a genome size of 3.05 Mbp, a G + C con-
tent of 62.2%, 315 contigs with N50 values of 14,488, and 
3,512 predicted genes.

Potential antibiotic resistance mutations and genotype in 
L. pneumophila
Antibiotic resistance genotypes were searched in the 
NCBI’s AMRFinderPlus tool. The gene encoding the 
aminoglycoside O-phosphotransferase aph(9)-Ia, which 
confers resistance to spectinomycin, was detected in 
all four L. pneumophila MAGs (Table  3). Additionally, 
point mutations in genes known to be responsible for 
resistance to macrolides (lpeA, lpeB, rplD, rplV, and rrl 

23 rRNA), fluoroquinolones (gyrA, gyrB, parC, parE), 
and rifampicin (rpoB)) drugs used for the treatment and 
management of LD were explored (Supplementary Table 
S2). Several nonsynonymous single nucleotide variants 
(SNVs) in resistance-associated genes (rpoB, lpeB, rplD, 
gyrA, gyrB, parC, and parE) were detected compared to 
the reference L. pneumophila strain Paris. Detailed infor-
mation regarding the positions and amino acid changes 
of these nonsynonymous SNVs that were identified are 
described in Supplementary Table S3. In total, 138 non-
synonymous SNVs corresponding to seven genes and one 
deletion mutation in the lpeB gene were identified. Non-
synonymous SNVs were highly prevalent in the genes 
gyrA and gyrB, which had 85 and 17 variants, respec-
tively. No mutations were detected in the lpeA efflux 
pump gene, 23 rRNA gene rrl or ribosomal accessory 
protein gene rplV.

Antibiotic resistance patterns of Aeromonas species
The ARGs identified from Aeromonas caviae and 
Aeromonas hydrophila MAGs are presented in Table  3. 
Within these MAGs, resistance to the antimicrobial 
classes aminoglycoside and β-lactam was conferred by 
two and five ARGs, respectively. Specifically, the MAGs 
classified as A. caviae WP1INF9 and WP3INF2 were 
found to carry aph(6)-Id and aph(3’’)-Ib, known for their 
strong affinity towards streptomycin and kanamycin, 
respectively, contributing to aminoglycoside gene resis-
tance. Additionally, both A. caviae MAGs presented the 
β-lactam resistance genes blaMOX−4 and blaOXA−1143. In 
contrast, A. hydrophila MAG WP3AS1 harboured dis-
tinct β-lactam resistance genes, namely, blaOXA−724, cepH, 
and imiH. The resistance profiles of the two A. caviae 
MAGs (WP1INF9 and WP3INF2) were similar, whereas 
A. hydrophila had unique ARGs. Furthermore, the iden-
tified ARGs had a relatively high percent identity (above 
95%), suggesting the potential completeness or function-
ality of the resistance genes.

Table 3 Antibiotic resistance genes within the metagenome-assembled genomes (MAGs) classified as L. pneumophila and Aeromonas 
spp. from municipal wastewater
Antibiotic class L. pneumophila A. caviae A. hydrophila

WP1INF4 WP2AS8 WP2SST1 WP3INF4 WP1INF9 WP3INF2 WP3AS1
Gene (%) Gene (%) Gene (%) Gene (%) Gene (%) Gene (%) Gene (%)

Aminoglycoside aph(9)-Ia
(89.8)

aph(9)-Ia
(90.4)

aph(9)-Ia
(90.3)

aph(9)-Ia
(90.5)

aph(6)-Id (100)
aph(3’’)-Ib (99.9)

aph(6)-Id (100)
aph(3’’)-Ib (99.9)

-

β-lactams - - - - blaMOX−4 (95.7)
blaOXA−1143 (96.5)

blaMOX−4 (95.7)
blaOXA−1143 (96.5)

blaOXA−724
(99.8)
cepH
(99.9)
imiH
(97.2)

Note: %: percentage
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Discussion
The present study comprehensively investigated AR pro-
files and point mutations associated with resistance in 
the MAGs of L. pneumophila and Aeromonas spp. from 
municipal wastewater. The aminoglycoside O-phos-
photransferase gene (aph(9)-Ia) was detected in all L. 
pneumophila MAGs. This gene confers resistance to 
spectinomycin in L. pneumophila. Svetlicic et al. (2023) 
characterised the genomes of 39 Legionella isolates 
recovered during the environmental surveillance of man-
made water systems, including showers, sinks, cooling 
towers, fountains, and irrigation tanks, across 13 coun-
tries and identified the aph(9)-Ia gene in 25 strains of L. 
pneumophila and two strains of Legionella gormanii [29]. 
Although the aph(9)-Ia gene is currently not considered 
a serious risk due to the infrequent use of spectinomycin 
in LD treatment, spectinomycin-resistant L. pneumoph-
ila has the potential to horizontally transfer the gene to 
other clinically relevant pathogens.

This study identified several nonsynonymous SNVs in 
L. pneumophila AR genes associated with resistance to 
macrolide, fluoroquinolone, and rifampicin drugs. An 
inherent limitation of the present study is the unavail-
ability of culturable isolates to explore the correlation 
between phenotypic antimicrobial susceptibility patterns 
and genomic characteristics due to resource constraints. 
However, genomic findings presented in this study offer 
valuable information on the potential resistance mecha-
nisms in L. pneumophila and Aeromonas spp., providing 
a foundation for future studies that can link these geno-
types to phenotypic resistance patterns. The SNV find-
ings of this study were compared with those of previously 
reported in vitro target gene induced mutations associ-
ated with macrolide, fluoroquinolone, and rifampicin 
in L. pneumophila [11–12, 30], but no similarities were 
found. It should be noted that unlike other ARB, limited 
studies have described gene mutations conferring AR in 
L. pneumophila [10, 31], resulting in limited data avail-
able for comparison. Among the identified mutations in 
the L. pneumophila MAGs recovered in this study, two-
point mutations occurring at nucleotide positions 978 
and 979 in the lpeB gene had previously been detected by 
Natås et al. (2019), and the other mutations could not be 
associated [31]. Natås et al. (2019) reported G978S and 
L979V variants in the lpeB gene in clinical and environ-
mental L. pneumophila strains with reduced suscepti-
bility to azithromycin [31]. Interestingly, the clinical L. 
pneumophila strain harboured both mutations, whereas 
the environmental strain possessed only the G978S vari-
ant [31]. Unlike clinical Legionella strains, the environ-
mental MAGs of Legionella in this study may not have 
developed AR mutations affecting L. pneumophila sen-
sitivity to treatment because of a lack of selective pres-
sure. Notably, this study identified different amino acid 

changes (G978I and L979P), possibly due to distinct 
nucleotide substitutions resulting in different amino acid 
changes [32]. Unlike mutations induced by therapeutic 
interventions, humans can be exposed to resistant Legi-
onella strains present in the environment. Macrolides, 
which are commonly used to treat respiratory infections 
in humans, are also naturally produced by Streptomycetes 
species in the environment [33]. These macrolides have 
been detected in various water systems, including both 
influent and treated effluent wastewater [34, 35]. In a 
recent one-year study by Senta et al. (2019) in Croatian 
WWTPs, macrolide concentrations of up to 25 micro-
grams per liter were observed [34]. The widespread pres-
ence of macrolides in WWTPs, coupled with their poor 
removal through conventional WWTP processes, sug-
gests that Legionella species are exposed to macrolides at 
relatively high levels in these settings, potentially contrib-
uting to the development of AR.

Detecting DNA gyrase mutations in L. pneumophila 
can help predict the presence and level of fluoroquino-
lone resistance (FQR). In this study, DNA gyrase genes 
harboured a high number of nonsynonymous SNVs 
compared to other target genes. While previously con-
sidered improbable, recent studies have revealed FQR in 
L. pneumophila from LD infected patients [36]. To date, 
the most common FQR mutation reported in clinical L. 
pneumophila occurs in gyrA codon 83 [9, 37]. Although 
the clinical significance of our findings on FQR could not 
be determined at this time, the alarming probability of 
FQR emergence associated with spontaneous mutations 
in environmental L. pneumophila warrants attention. 
This trend may complicate LD treatment in the future, 
particularly considering the efficacy of fluoroquinolones 
against broad spectrum bacteria.

Genetic mutation is one of the major mechanisms driv-
ing the development and acquisition of AR in bacteria. 
Antibiotic resistance caused by mutations frequently 
reduces drug binding or loss of function, thus promot-
ing drug efflux activity and diminishing the intracellular 
drug concentration [38]. Spontaneous mutations, such 
as base pair substitutions, insertions, and deletions in 
genes encoding drug targets, are common mechanisms in 
acquired mutations [38]. Understanding mutational AR, 
especially in clinically relevant bacterial pathogens from 
the environment including WWTPs, is crucial, as AR can 
arise spontaneously even without strong selective pres-
sure or antibiotic exposure [39]. Therefore, a more in-
depth analysis to explore the mechanisms underlying the 
acquisition of nonsynonymous SNVs in environmental 
L. pneumophila is needed. Future studies should include 
sequencing of susceptible and resistant L. pneumophila 
isolates, which would help in determining the magnitude 
of the effect of the identified mutations.
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The common ARGs detected among Aeromonas spp. 
MAGs in this study were β-lactams. This finding is in 
agreement with other studies indicating that this genus 
often exhibits high resistance to β-lactams and may 
serve as a potential reservoir for the dissemination of 
β-lactam ARGs in water environments [40, 41]. Class C 
β-lactamase genes are chromosomal or plasmid-encoded 
and confer resistance to cephamycins, oxyimino-β-
cephalosporins, and aztreonam [13]. The main concern 
with plasmid mediated ARGs is their potential for hori-
zontal transfer, including across different bacterial spe-
cies. In this study, two β-lactamase genes from class C 
were identified: blaMOX−4, and cepH. Previously, blaMOX−4 
was identified in only an Aeromonas strain from an urban 
WWTP in Poland [40]. On the other hand, the cepH gene 
is specific to A. hydrophila and has been commonly iden-
tified in various environments including wastewater [40, 
42], clinical samples [43], and fish [44].

Oxacillin-hydrolysing (OXA)-type β-lactamases (mem-
bers of class D) are widely distributed among clinically 
relevant gram-negative bacteria, including Aeromonas 
spp [45]. Their diversity continues to expand to include 
new blaOXA variants [45]. This study identified bla-
OXA−1143 and blaOXA−724 in A. caviae and A. hydrophila, 
respectively. To the best of our knowledge, this is the 
first study to report the blaOXA−1143 subtype in munici-
pal wastewater, although it was previously reported in an 
unpublished study of a rectal swab sample from a patient 
in France (GenBank accession no. NG_081795.1). 
Conversely, blaOXA−724 has been identified in different 
Aeromonas species isolated from faeces of gastroenteri-
tis patients [40], poultry [46], chickens [47], and fish [48]. 
Notably, this study represents the first identification of 
blaOXA−724 in an Aeromonas from a municipal WWTP.

Class B metallo-β-lactamases (MBLs) pose a serious 
AR threat because of their ability to enzymatically hydro-
lyse most β-lactams, including carbapenems, which are 
reserved as a last resort for bacterial infections [49]. This 
study identified the MBL encoding gene imiH, which is 
specific to A. hydrophila. Previously, imiH was identified 
in A. hydrophila isolated from diverse sources, includ-
ing a dairy farm in Texas [50], a recreational estuary in 
Brazil [51], Indian carp [48], and an activated sludge 
sample from a Polish urban WWTP [40]. Differences in 
resistance genotypes between A. caviae and A. hydroph-
ila are associated with species variation. For instance, 
chromosomal β-lactamase is species-specific in Aeromo-
nas species, with A. caviae possessing Class C and D 
β-lactamases, whereas A. hydrophila presents a broader 
spectrum with Class B, C, and D enzymes [13].

This study identified aminoglycoside resistance encod-
ing genes, aph(6)-Id and aph(3’’)-Ib, conferring resis-
tance to streptomycin and kanamycin, in both A. caviae 
MAGs. These findings are consistent with prior research 

investigating circulating ARGs in wastewater, suggest-
ing the widespread presence of aph(6)-Id and aph(3’’)-Ib 
in such environments [52, 53]. It should be noted that 
aminoglycoside encoding genes are typically located 
on plasmids or transposons and have been reported in 
Aeromonas spp [41, 54]. Therefore, it is plausible that A. 
caviae could be an important reservoir for the dissemina-
tion of aminoglycoside encoding genes, including aph(6)-
Id and aph(3’’)-Ib, to other bacterial species, particularly 
those of clinical importance, thereby posing a significant 
public health risk.

Previous studies have suggested that WWTP work-
ers are potentially exposed to ARB at work via dif-
ferent exposure routes, such as inhalation and/or 
accidental ingestion of water droplets [20, 55]. Further-
more, an increased prevalence of respiratory and gas-
trointestinal diseases has been reported among WWTP 
workers [56], as well as elevated antibodies against cer-
tain bacteria [57], suggesting a link to bacterial exposure. 
Rodríguez-Molina and co-workers (2021) recently inves-
tigated ARB carriage in WWTP workers and noted the 
presence of extended-spectrum β-lactamase producing 
E. coli in the stool of WWTP workers and nearby resi-
dents in Romania, Germany, and the Netherlands, with 
the Romanian population having the highest carriage rate 
(28%) [58]. Therefore, AR studies are crucial for obtaining 
a better understanding of the exposure status of workers 
in WWTPs as well as developing preventive interven-
tions to reduce potential occupational exposure.

The findings of this study highlight the role of munici-
pal wastewater as a significant reservoir for AR, where 
environmental, human, and animal health intersect. 
The identified ARGs and SNVs reveal emerging AR pat-
terns in municipal wastewater, providing early insights 
into potential threats from waterborne pathogens, spe-
cifically L. pneumophila and Aeromonas spp. Although 
preliminary, these findings are essential for guiding 
occupational, public health, and environmental moni-
toring efforts, highlighting the increasing risks posed by 
AR. Additionally, this study integrates the One Health 
approach, underscoring the importance of managing AR 
in the context of climate change, which is accelerating the 
spread of these pathogens across sectors.

Conclusion
This study characterised MAGs of L. pneumophila and 
Aeromonas spp. from municipal wastewater in South 
Africa. Legionella pneumophila MAGs harboured sev-
eral nonsynonymous genetic variations in the genes 
rpoB, lpeB, rplD, gyrA, gyrB, parC, and parE, which are 
implicated in LD antibiotic resistance. Future pheno-
typic testing studies are needed to determine the clinical 
implications of these mutations in AR. Additionally, this 
study demonstrated the role of municipal wastewater as 
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a reservoir of Aeromonas spp. carrying multiple func-
tional ARGs, including plasmid-mediated β-lactamase 
genes that can be easily disseminated among different 
species. Therefore, implementing large-scale surveillance 
programs is crucial to uncover AR strains and markers 
circulating in municipal wastewater, understand factors 
driving the spread of AR, and enable early detection and 
mitigation of the potential transmission of L. pneumoph-
ila and Aeromonas spp. from environmental sources to 
clinical settings and communities. In summary, our find-
ings pave the way in elucidating how clinically relevant 
pathogenic bacteria such as L. pneumophila and Aeromo-
nas spp. occurring in engineered water systems such as 
municipal wastewater can develop AR.
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