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Abstract
Class I integrons have garnered significant attention due to pivotal roles in the dissemination of antimicrobial 
resistance genes (ARGs), which impose risks to public health and food safety. Here, the prevalence and 
characteristics of class I integrons in Escherichia coli isolates derived from food-producing animals and human 
patients were assessed. Of 721 E. coli isolates collected from human patients (113), pigs (298), and poultry (310), 93 
(12.90%) carried the class I integrase gene (intI1). Multilocus sequence typing identified 39 sequence types from 
93 intI1-postive isolates, including three novel types. Sequence analysis revealed that 59 classical class I integrons 
encompassed six distinct gene cassettes arrangements [dfrA17-aadA5, dfrA12-aadA2, dfrA1-aadA1, dfrA7, aac(6’)-
Ib, and aadA1-aac(3)-VIa]. Six insertion sequences (IS1, IS6, IS21, IS91, IS110, and IS256) and one transposon (Tn3) 
were harbored in proximity to the integrons. A comparison with sequences retrieved from the National Center for 
Biotechnology Information database demonstrated that E. coli isolates with integron sequences were detected in 
various food-producing animals and human hosts in environmental niches across Asia, Europe, and North America. 
These findings indicate the potential risk of ARG transmission between food-producing animals and humans by 
bacteria populations and provide useful baseline data for monitoring of ARGs.
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Introduction
The increasing prevalence of antimicrobial resistance 
(AMR) poses a significant threat to global human health, 
a crisis emphasized by the World Health Organization in 
2022 [1]. The imprudent utilization of antibiotics, includ-
ing their overuse and misuse in human medicine, veteri-
nary practice, and agriculture, leads to widespread AMR 
by accelerating the selection for AMR through under-
dosed antibiotic exposure, which promotes the acqui-
sition of resistance genes (ARGs) and mobile genetic 
elements like integrons. Through horizontal gene transfer 
between different bacterial species, contributing to the 
emergence of multidrug-resistant (MDR) bacteria across 
various environments and hosts [2]. The spread of MDR 
bacteria in various environments and hosts including 
livestock, human populations, and agricultural, thereby 
establishing a complex chain of transmission that encom-
passes both the transmission from food-producing ani-
mals to the environment and the subsequent impact on 
human populations, as well as the bidirectional trans-
mission between humans and animals through contact 
or the environment. Addressing the AMR within this 
chain is imperative and is currently pursued under the 
“One Health” framework [3]. Studies indicate a mortality 
rate associated with AMR, with approximately 700,000 
deaths annually worldwide [4]. Notably, bacterial strains 
belonging to different species from food-producing ani-
mals, are responsible for an estimated 20% of drug-resis-
tant infections in clinical human cases [5]. Among them, 
Escherichia coli coexists symbiotically within the gastro-
intestinal systems of humans and animals and harbors a 
vast array of ARGs. Thus, it serves as a dynamic reservoir 
for the dissemination of AMR. This organism not only 
harbors a vast array of ARGs but also serves as a dynamic 
hub for the dissemination of AMR [6].

Integrons, mobile genetic elements found predomi-
nantly in Gram-negative bacteria, notably E. coli, have 
garnered significant attention due to fundamental roles 
in propagating ARGs [7]. These genetic platforms have 
the capability to capture, exchange, and rearrange ARGs 
embedded within gene cassettes (GCs), thereby facilitat-
ing interbacterial transfer of AMR [8]. The typical struc-
ture of an integron encompasses three primary segments. 
Initiating this structure is the integrase gene (intI), which 
encodes a tyrosine-specific recombinase that orches-
trates the processes of shuffling, integrating, or excis-
ing incoming GCs via site-specific, RecA-independent 
recombination. Subsequently, an integron-associated 
recombination site (attI) serves as the strategic locus for 
the insertion and recombination activities of GCs. The 
final segment comprises an integron-associated promoter 
(Pc) that is instrumental in regulation of the expression 
levels of GCs [9]. GCs are distinct mobile genetic ele-
ments that typically pair an open reading frame with 

a unique site-specific recombination locus known as 
attC to maintain the structural integrity and functional 
dynamics of the integron [10].

Integrons are categorized into five distinct classes 
based on the variability of the amino acid sequences of 
related integrases. However, only the classes I, II, and III 
have been associated with AMR [11]. Among these, class 
I integrons are the most widely distributed among E. coli 
from different sources and demonstrate connections 
with diverse insertion sequences or transposon families 
[12]. Despite the wide-ranging diversity of GCs associ-
ated with class I integrons, there is a frequent presence 
of GCs conferring resistance to trimethoprim (including 
the dfr genes), along with others providing resistance to 
streptomycin and spectinomycin (including the aadA 
genes). In addition, the sulfonamide resistance (sul1) 
gene is characteristically located at the 3’conserved seg-
ment (3’CS) [13]. In contrast to class I integrons, class II 
types are less prevalent and exclusively associated with 
Tn7 transposons and related derivatives [14]. The amino 
acid sequences of integrases of class I and II integrons 
exhibit approximately 50% homology. A standard array 
of GCs in class II integrons, namely dfrA1-sat1/2-aadA1, 
has been identified, with the sat1/2 gene imparting resis-
tance to streptothricin [15]. Class III integrons, which 
have been identified in fewer than 10 bacterial species, 
typically harbor GCs that encode resistance mechanisms 
specifically targeting aminoglycosides [aac(6’)-Ib] and 
β-lactams (blaOXA−256, blaGES, blaBEL, and blaIMP) [16]. 
The diversity of reports on class I integrons underscores 
the need for intensified microbial surveillance to compre-
hensively understand the dissemination of AMR.

The previous evidence indicates that due to the high 
prevalence of class I integrons in E. coli, they can become 
vehicles for widespread dissemination of AMR in differ-
ent niches and countries [17, 18]. Therefore, the aims of 
the present study were to assess the prevalence of class I 
integrons in E. coli isolates derived from food-producing 
animals and human patients, and to clarify potential link-
ages with interspecies dissemination of ARGs. For this 
purpose, E. coli isolates were collected from clinical spec-
imens from patients in multiple hospital settings, along 
with samples from swine and poultry from various farms 
located throughout Zhejiang Province, China, from July 
2019 to November 2022. The presence of class I integrons 
carried by E. coli isolates was assessed and potential cor-
relations with AMR were investigated by comprehen-
sive whole-genome sequencing. The results of this study 
should prove useful to elucidate the transmission mecha-
nisms underlying AMR and to assess potential risks asso-
ciated with gene transfer among bacteria across different 
hosts.
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Materials and methods
Sampling, bacterial isolation and identification
Between June 2019 and November 2022, a total of 780 
samples (415 anal swabs from pigs and 365 from differ-
ent poultry species) were collected from various farms 
located in Hangzhou, Quzhou, and Lishui within Zheji-
ang Province (China) at unscheduled intervals to ensure 
randomness in sampling. The samples were preserved at 
4  °C and transported to a designated laboratory under 
sterile conditions. All samples were processed within 
24 h post-collection. As an initial culture stage, the anal 
swabs were grown in Luria-Bertani broth (Qingdao Hope 
Bio-Technology Co., Ltd., Qingdao, China). After over-
night incubation, the cultured medium was streaked by 
inoculating loop onto eosin-methylene blue agar plates 
(Beijing Solarbio Science & Technology Co., Ltd., Bei-
jing, China), and subsequently incubated at 37  °C for 
16–18  h. Presumptive E. coli colonies were selected for 
further analysis. In addition, 113 E. coli isolates from 
patient samples collected from February to July 2021 
were acquired from the Qingchun and Xiasha branches 
of Sir Run Shaw Hospital (Hangzhou, Zhejiang Province) 
(Fig.  1). A polymerase chain reaction (PCR) technique 
was employed to identify the E. coli isolates by uidA gene 
primers. As described previously [19], the PCR reaction 
system contained DNA template (1 µL), deoxynucleo-
tide triphosphates (2 µL of 200 mM), 10× buffer (2.5 µL), 
primers (1 µL of each), Ex-Taq DNA polymerase (0.125 
µL of 50 U). All the PCR reagents were purchased by 
Takara-Bio (Dalian, China). The PCR reaction procedure 

is as follows: 94 °C for 1 min; 30 cycles of 98 °C for 30 s, 
55 °C for 30 s, 72 °C for 30 s; 72 °C for 10 min. The 5 µL 
PCR amplification product were analyzed by electro-
phoresis. Upon confirmation, the isolates were stored in 
2-mL sterile tubes containing 50% glycerol at -80  °C for 
further analysis.

Identification of the class I integrase gene intI1
Genomic DNA was extracted from all E. coli isolates 
using a bacterial genomic DNA extraction kit (General, 
Shanghai, China) in accordance with the manufacturer’s 
instructions. The primer pair intI1-F (5’- G G C T T C G T G A 
T G C C T G C T T-3’) and intI1-R (5’- C A T T C C T G G C C G T 
G G T T C T-3’) was designed to specifically amplify the tar-
get gene intI1. Each 25-µL PCR reaction volume included 
2 µL of the DNA template, 12.5 µL of HotStarTaq® Master 
Mix (Qiagen GmbH, Hilden, Germany), 1 µL of the for-
ward primer (intI1-F), 1 µL of the reverse primer (intI1-
R), and 8.5 µL of sterilized deionized water. The PCR 
cycling conditions included an initial denaturation step at 
94 oC for 1 min, followed by 35 cycles of denaturation at 
94 oC for 1 min, annealing at 55 oC for 30 s, and extension 
at 72 oC for 30 s, with a final extension step at 72 oC for 
10 min. The PCR amplification product were analyzed by 
electrophoresis.

Antimicrobial susceptibility testing
Antimicrobial susceptibility of the E. coli isolates 
against 13 agents spanning seven distinct antimicrobial 
classes was assessed using the disk diffusion method, 

Fig. 1 Geographical distribution of the sampling areas. The hospitals, pig and poultry farms are denoted with orange, black, and purple circles, respec-
tively. The cities of Hangzhou, Quzhou, and Lishui are shaded in pink, green, and blue, respectively. Zhejiang Province is shaded in brown
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as established by the Clinical and Laboratory Standards 
Institute [20]. The antibiotic disks were obtained from 
Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, 
China). The tested antibiotics included aminoglycosides 
(kanamycin [KAN], 30  µg; streptomycin [SM], 10  µg; 
neomycin [NEO], 30  µg), phenicols (chloramphenicol 
[CPL], 30 µg; florfenicol [FLO], 30 µg), β-lactams (ampi-
cillin [AMP], 10  µg; meropenem [MRP], 10  µg), fluoro-
quinolones (enrofloxacin [ENR], 10 µg; ofloxacin [OFX], 
5 µg), a lipopeptide (polymyxin B [PB], 300 µg), sulfon-
amides (sulfisoxazole [SIZ], 300  µg), tetracycline (TET, 
30 µg) and trimethoprim (TMP, 5 µg). The E. coli isolates 
were incubated overnight at 37  °C and then diluted to 
0.5 McFarland turbidity standard. Thus, 100 µL bacterial 
inoculum were plated on Mueller-Hinton agar (Qingdao 
Hope Bio-Technology Co., Ltd.) and incubated at 37  °C 
for 16–18  h. The inhibition zone diameters were mea-
sured to determine the level of resistance to the respec-
tive antibiotics according to the CLSI 2021. E. coli strain 
ATCC 25,922 was used for quality control. All E. coli 
isolates exhibiting resistance to three or more antibiotic 
classes were classified as MDR [19].

Genome sequencing and data manipulation
The genomes of all intI1-positive E. coli isolates were 
sequenced using the HiSeq™ Sequencing System (Illu-
mina, Inc., San Diego, CA, USA). DNA libraries were 
constructed from 0.2 µg of each DNA sample using the 
NEBNext® Ultra™ DNA Library Prep Kit for Illumina 
(New England Biolabs, Ipswich, MA, USA) in accor-
dance with the manufacturer’s guidelines. Each sample 
was assigned a unique index code. The DNA samples 
were fragmented by ultrasound into segments of approxi-
mately 350 bp, which were subjected to end repair by the 
addition of poly(A) tails and adapter ligation to ensure 
fidelity. Then, the segments were amplified by PCR to 
solidify the robustness of the library. The quality of the 
segments was assessed with a 5400 Fragment Analyzer 
system (Agilent Technologies, Inc., Santa Clara, CA, 
USA), while the quantity was measured by real-time PCR. 
Segments with a quality threshold < 20 were excluded 
from further analysis. Following pooling of the qualified 
segments, high-throughput sequencing was conducted 
with the HiSeq™ Sequencing System by Novogene Bio-
informatics Technology Co., Ltd (Beijing, China). After 
a rigorous cleaning process, the raw sequences were 
assembled with CLC Genomics Workbench 12 software 
(CLC Bio, Aarhus, Denmark) to ensure precise and reli-
able sequence data for subsequent analyses.

Genome sequence analysis
Multilocus sequence typing (MLST) was conducted 
using MLST 2 software ( h t t p  s : /  / c g e  . n  c b s  . d t  u . d k  / s  e r v i c 
e s / M L S T /). MLST allele sequence and profile data was 

obtained from PubMLST.org (https://pubmlst.org/). 
Subsequently, a minimal spanning tree of the isolates 
was generated with the GrapeTree tool ( h t t p  s : /  / a c h  t m  a 
n -  l a b  . g i t  h u  b . i o / G r a p e T r e e /) [21]. The Power BI data and 
analytics reporting tool ( h t t p  s : /  / w w w  . p  r o c  e s s  - s c i  e n  c e . c 
o m / p o w e r - b i /) was employed to elucidate the structural 
relationships among the isolates. Then, ResFinder 4.1 
software ( h t t p  : / /  g e n e  p i  . f o  o d .  d t u .  d k  / r e s fi  n d e r) was used 
to identify AMR genes in the next-generation sequenc-
ing data [22]. A heatmap was generated using TBtools 
software [23] ( h t t p  s : /  / g i t  h u  b . c  o m /  C J - C  h e  n / T B t o o l s - I I) 
to visualize the distribution patterns of acquired AMR 
genes from diverse gene families across the genomes of 
individual isolates. Class I integrons were annotated with 
Integron_finder software [24] ( h t t p  s : /  / g i t  h u  b . c  o m /  g e m -  p 
a  s t e  u r /  I n t e  g r  o n _ F i n d e r). Sequences retrieved from the 
National Center for Biotechnology Information (NCBI) 
database and aligned with the Basic Local Alignment 
Search Tool ( h t t p  : / /  b l a s  t .  n c b  i . n  l m . n  i h  . g o v / B l a s t . c g i) were 
used to identify the AMR genes present on the GCs of 
integrons. Finally, Easyfig 2.2.5 software [25] ( h t t p  s : /  / m 
j s  u l  l . g  i t h  u b . i  o /  E a s y fi  g /) was employed for side-by-side 
comparative analysis of genetic landscapes.

Statistical analysis
Within the parameters of this analysis, the scoring mech-
anism was straightforward: the presence of AMR genes 
was assigned a score of 1, while the absence of AMR 
genes was assigned a score of 0. The chi-square test was 
used to assess the relatedness of categorical variables. A 
probability (p) value < 0.05 was considered statistically 
significant.

Results
Sources of E. Coli isolates and detection of the class I 
integrase gene intI1
Of the 721 E. coli isolates examined in this study, 113 
were from human patients from Sir Run Shaw Hospital 
and 608 were from food-producing animals raised on 
farms across Zhejiang Province (298 from pig anal swabs 
and 310 from poultry anal swabs) (Fig. 1).

Overall, 93 (12.90%) of the 721 E. coli isolates were pos-
itive for the class I integrase gene intI1. The prevalence of 
the intI1-positive isolates was 17.70% (20/113) in hospi-
talized patients, 17.45% (52/298) in pig samples, and only 
6.77% (21/310) in poultry samples. Notably, intI1 was 
considerably more common in pig samples and hospital-
ized patients than poultry samples (p < 0.05).

Antimicrobial susceptibility of intI1-positive and -negative 
E. Coli isolates
The AMR profiles of 93 intI1-positive and 628 intI1-
negative E. coli isolates are depicted in Fig. 2. Of the 93 
intI1-positive E. coli isolates, 88 (94.62%), 82 (88.17%), 

https://cge.ncbs.dtu.dk/services/MLST/
https://cge.ncbs.dtu.dk/services/MLST/
https://pubmlst.org/
https://achtman-lab.github.io/GrapeTree/
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https://www.process-science.com/power-bi/
http://genepi.food.dtu.dk/resfinder
https://github.com/CJ-Chen/TBtools-II
https://github.com/gem-pasteur/Integron_Finder
https://github.com/gem-pasteur/Integron_Finder
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://mjsull.github.io/Easyfig/
https://mjsull.github.io/Easyfig/
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82 (88.17%), and 60 (64.52%) were resistant to SIZ, TMP, 
TET, and SM, respectively (Fig.  2A). In addition, 90 
(96.77%) of the intI1-positive isolates were resistant to at 
least one antibiotic, with 82 (88.17%) categorized as MDR 
(Fig.  2B). Furthermore, 38 (40.86%) and 28 (30.11%) of 
the 93 intI1-positive isolates were resistant to three and 
four classes of antibiotics, respectively. A single intI1-
positive E. coli isolate (1.08%) exhibited resistance across 
all seven antibiotic classes. Overall, there were 16 distinct 
AMR patterns, with resistance to KAN-CPL-TMP-SIZ 
emerging as the most prevalent at 33.33% (31/93) (Table 
S1).

Of the 628 intI1-negative E. coli isolates, 299 (47.61%), 
276 (43.95%), 237 (37.74%), and 169 (26.91%) were resis-
tant to CPL, AMP, SM, and TET, respectively (Fig. 2C). 
In addition, 471 (75.00%) of the 628 intI1-negative E. 

coli isolates exhibited resistance to at least one anti-
biotic class, with 241 (38.38%) categorized as MDR 
(Fig. 2D). Among these, 157 (25.00%), 127 (20.22%), and 
127 (20.22%) were susceptible, one, and three classes of 
antibiotics, respectively. In addition, six intI1-negative E. 
coli isolates (0.96%) were resistant to all seven antibiotic 
classes. In total, 31 different AMR patterns were identi-
fied among the intI1-negative E. coli isolates, with CPL-
AMP as the most common AMR pattern (9.39%, 59/628) 
(Table S2).

The MDR pattern was correlated with the presence of 
class I integrons (Table  1). The resistance rates to SM, 
CPL, FLO, TET, TMP and SIZ were significantly higher 
for isolates harboring class I integrons (p < 0.01).Also, the 
MDR rate was significantly higher for isolates contain-
ing class I integrons (p < 0.01). Meanwhile, there were no 

Fig. 2 AMR profiles of intI1-positive and -negative E. coli isolates in this study. (A) AMR rates of 93 intI1-positive E. coli isolates. (B) The distribution of 
MDR strains among 93 intI1-positive E. coli isolates. (C) AMR rate of 628 intI1-negative E. coli isolates. (D) The distribution of MDR strains among 628 intI1- 
negative E. coli isolates. Kanamycin, KAN; streptomycin, SM; neomycin, NEO; chloramphenicol, CPL; florfenicol, FLO; ampicillin, AMP; meropenem, MRP; 
enrofloxacin, ENR; ofloxacin, OFX; polymyxin B, PB; sulfisoxazole, SIZ; tetracycline, TET; trimethoprim, TMP
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significant differences in the rates of resistance to KAN, 
NEO, AMP, MRP, ENR, OFX, and PB between isolates 
with and without class I integrons (p > 0.05).

AMR gene patterns of intI1-positive E. Coli isolates
A diverse array of AMR genes was identified among the 
93 intI1-positive E. coli isolates (Fig. 3A), which included 
genes conferring resistance to β-lactams (blaCTX−M, 
blaDHA−1, blaOXA, blaTEM), sulfonamides (sul1, sul2, 
sul3), tetracycline [tet(A)], aminoglycosides [aac(3)-VIa, 
aac(3’)-Ib, aac(6’)-Ib, aadA1, aadA2, aadA5, aadA8, 
aph(4)-Ia, aph(6)-Id], trimethoprim (dfrA1, dfrA5, dfrA7, 
dfrA12, dfrA17), fluoroquinolones (qnrB4, qnrS1, qnrS2), 
fosfomycins (fosA, fosA3), lipopeptides (mcr-1.1, mcr-
9.1), macrolides [mph(A)], rifamycin (arr), and chloram-
phenicol (floR).

Prevalent resistance genes carried by the isolates 
included those conferring resistance to sulfonamides 
(sul1 [41.94%], sul2 [44.09%], sul3 [13.98%]), trime-
thoprim (dfrA1 [11.83%], dfrA5 [2.15%], dfrA7 [9.68%], 
dfrA12 [19.35%], dfrA17 [29.03%]), aminoglycosides 
(aac(3)-VIa [10.75%], aac(3’)-Ib [6.45%], aac(6’)-Ib 
[30.11%], aadA1 [24.73%], aadA2 [17.20%], aadA5 
[30.11%], aadA8 [2.15%], aph(4)-Ia [8.60%], aph(6)-Id 
[34.41%]), and β-lactams (blaCTX−M [21.51%], blaDHA−1 
[4.30%], blaOXA [6.45%], blaTEM [53.76%]) (Fig. 3B).

MLST analysis of intI1-positive E. Coli isolates
All 93 intI1-positive isolates were sequenced and sub-
jected to MLST analysis. The draft genome length of 
these isolates was 4.46–5.37  Mb. In total, 39 sequence 

types (STs) with three (3/39) unknown STs were observed 
from all 93 isolates. Three novel ST profiles of seven E. 
coli isolates were identified with the EnteroBase online 
resource for analysis and visualization of genomic varia-
tion within enteric bacteria ( h t t p  s : /  / e n t  e r  o b a  s e .  w a r w  i c  
k . a  c . u  k / s p  e c  i e s  / e c  o l i /  a l  l e l e _ s t _ s e a r c h), which included 
ST237112 (traced back to four distinct E. coli isolates 
derived from pig samples in Hangzhou), ST237113 
(associated with two E. coli isolates from pig samples in 
Lishui), and ST237114 (linked to a single E. coli isolate 
from a pig sample collected in Hangzhou).

Of the 93 intI1-positive isolates, ST10 (8.60%, 8/93) 
emerged as the most predominant ST. In addition, 
ST349, ST101 and ST1196, were each identified in 6.45% 
(6/93), 5.38% (5/93) and 5.38% (5/93) of the isolates. A 
detailed analysis of the 20 intI1-positive isolates derived 
from hospitalized patients revealed ST1196 and ST131 
as the most common STs, each accounting for 20.00% 
(4/20). Meanwhile, ST349 was identified in six (11.32%) 
of the 53 intI1-positive E. coli isolates obtained from pig 
samples. Of the 20 intI1-positive isolates from poultry 
samples, ST10 was identified in five (25.00%). Notably, 
ST10 was present in isolates from hospitalized patients, 
as well as pig and poultry samples. ST101, ST156, ST165, 
ST457 and ST7508 were identified in both pig and poul-
try samples. Furthermore, ST1196 was common for pig 
samples and hospitalized patients, while ST744 was iden-
tified in both poultry samples and hospitalized patients. 
In summary, five distinct STs were observed across two 
or three different sources (Fig. 4).

Characterization of class I integrons in E. Coli isolates
Of the 93 intI1-positive E. coli isolates, 59 (63.44%) har-
bored the classic class I integron, characterized by the 
intI1 gene in the 5’CS and the qacEΔ1 + sul1 genes in 
the 3’CS. The qacEΔ1 gene confers resistance to qua-
ternary ammonium compounds, while the sul1 gene 
confers resistance to sulfonamides. Overall, 33 isolates 
from pig samples, 17 from hospitalized patients, and 
nine from poultry samples harbored the classic class I 
integron genetic structure. Sources, STs, and arrange-
ment of AMR GCs among the 59 E. coli isolates carry-
ing classic class I integrons are listed in Tables 2 and Fig. 
S1. In total, six distinct AMR GCs were identified, with 
dfrA17-aadA5 as the most prevalent at 33.40% (20/59), 
followed by dfrA12-aadA2 (27.11%, 16/59), dfrA1-aadA1 
(22.03%, 13/59), dfrA7 (8.47%, 5/59), aac(6’)-Ib (5.08%, 
3/59), and aadA1-aac(3)-VIa (3.39%, 2/59). Remarkably, 
all 59 isolates with AMR GCs exhibited MDR. As shown 
in Table S3, 34 non-classic class I integrons lacked either 
GCs or the 3’CS region. Of these, 11 possessed only the 
intI1 gene, five had GCs conferring resistance to trime-
thoprim, and 18 contained GCs associated with amino-
glycoside resistance.

Table 1 Association between antimicrobial resistance 
phenotypes of intI1 positive or negative strains in 721 E. Coli 
isolates
Antibiotic No. (%) of isolates p valuea

intI1-positive 
strains
(n = 93)

intI1-nega-
tive strains
(n = 628)

Kanamycin 16 (17.20) 145 (23.09) 0.2311
Streptomycin 60 (64.52) 237 (37.74) < 0.0001*
Neomycin 8 (8.60) 60 (9.55) 0.4128
Chloramphenicol 17 (18.28) 299 (47.61) < 0.0001*
Florfenicol 26 (27.96) 15 (2.39) < 0.0001**
Ampicillin 47 (50.54) 276 (43.95) 0.2641
Meropenem 5 (5.38) 18 (2.87) 0.2030
Tetracyclines 82 (88.17) 169 (26.91) < 0.0001**
Enrofloxacin 4 (4.30) 16 (2.55) 0.3116
Ofloxacin 1 (1.08) 6 (0.96) 0.8283
Polymyxin B 7 (7.53) 26 (4.14) 0.1771
Trimethoprim 82 (88.17) 105 (16.72) < 0.0001**
Sulfisoxazole 88 (94.62) 155 (24.68) < 0.0001**
Multidrug-resistant 82 (88.17) 241 (38.38) < 0.0001**
a Differences between intI1 positive and negative strains were considered 
significant at p < 0.05* and extremely significant at p < 0.01**

https://enterobase.warwick.ac.uk/species/ecoli/allele_st_search
https://enterobase.warwick.ac.uk/species/ecoli/allele_st_search
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Genetic environment of classic class I integrons
Characterization of the genomic contexts of 59 classic 
class I integrons revealed the presence of six insertion 
sequences (IS1, IS6, IS21, IS91, IS110, and IS256) and 
one transposon (Tn3) adjacent to the integrons (Table 
S4). A comprehensive analysis to elucidate potential 
transmission pathways of these integrons both in the 

context of this study and globally found that all 20 inte-
gron sequences associated with the predominant GCs 
(dfrA17-aadA5) identified in this study were bordered 
by IS6 elements. A comparative sequence analysis using 
the NCBI database was conducted focusing on the “intI1-
dfrA17-aadA5-qacEΔ1-sul1” class I integron sequence. 
Four E. coli isolates exhibiting the highest sequence 

Fig. 3 ARG patterns of intI1-positive E. coli isolates. (A) Distribution of acquired ARGs. The red and yellow colors indicate the existence and absence of 
ARGs, respectively. (B) Different classes of ARGs acquired by intI1-positive E. coli isolates
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homology were selected for in-depth comparisons. Nota-
bly, strains containing this specific integron sequence 
were documented in poultry (this study, 2022), an 
unspecified animal in Japan (2016), wastewater in Swit-
zerland (2021), a Chinese hospital, and a human subject 
in the USA (both 2019). Each of these isolates harbored 
integrons flanked by IS6 elements (Fig.  5A). Further-
more, integron sequences with the second most common 
gene cassettes (dfrA1-aadA1) identified in this study was 
associated with IS1, IS6, IS21, or Tn3 elements. Similar 
sequences from the NCBI database were also affiliated 
with IS6100, Tn21, and TniB elements (Fig.  5B). These 
integron sequences were identified in various environ-
ments, including poultry, humans, and farms, and were 
geographically dispersed, with instances recorded in 
China, France, and the UK over different periods.

As shown in Fig. S2, further analysis was conducted 
on other frequently observed integron sequences, 
namely “IS6-intI1-dfrA12-aadA2-qacEΔ1-sul1-IS91” 
(Fig. S2A), “Tn3-intI1-dfrA7-qacEΔ1-sul1-IS21” (Fig. 
S2B), “IS6-intI1-aac(6’)-Ib-qacEΔ1-sul1-IS6” (Fig. S2C), 

and “Tn3-intI1-aadA1-aac(3)-VIa-IS91-IS256-qacEΔ1-
sul1-IS110” (Fig. S2D). These sequences were compared 
with others retrieved from the NCBI database. Strains 
harboring these integron configurations were bordered 
by an assortment of insertion sequences and transpo-
sons. These E. coli isolates were identified in various host 
organisms and environmental samples, including ani-
mals and meat products (e.g., pigs, poultry, turkeys, veal, 
other avian species), blood and urine samples collected 
from hospitalized patients and the community, and envi-
ronmental sources (wastewater and surface water). Geo-
graphic analysis revealed a wide distribution of these 
strains across continents, occurring in Asia (China and 
Singapore), Europe (Switzerland, Norway, Italy, France, 
and Spain), and North America (USA).

Discussion
The global challenge posed by AMR needs embracing of 
the “One-Health” strategy, an approach advocating for 
the interconnectedness of human and animal health-
care sectors and the environment [26, 27, 28, 29]. Class 

Fig. 4 Prevalence of 93 intI1-positive E. coli isolates in this study. Sankey diagram combining the cities, sampling sources, and STs based on 93 intI1-
positive E. coli isolates. The diameter of the line is proportional to the number of strains, which is also labeled with a number
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I integrons have been identified as crucial vehicles in 
the transmission of ARGs, but also roles as molecular 
sentinels, thus offering comprehensive and dependable 
assessment of the propagation of AMR [24, 25, 26, 27, 28, 
29, 30]. Moreover, E. coli is an important target for sur-
veillance of AMR due to its wide diversity of hosts and 
propensity for the acquisition of ARGs through diverse 
genetic elements [19]. In the present study, 12.90% of 
the E. coli isolates carried class I integrons. Notably, the 
detection frequency of the intI1 gene in pig and human 
samples was higher than that of poultry samples. This 
observation aligns with findings from various geo-
graphical locations, underscoring the ubiquity of class 
I integrons. In previous reports, the prevalence of class 
I integrons was 63.33% in E. coli isolates from human 

samples in Turkey [31], 52% in human-derived isolates in 
Iran [32], and 49% in poultry-derived isolates in Algeria 
[33]. In addition, the prevalence of class I integrons were 
reportedly lower in Thailand, with 11.5% and 10.8% of pig 
and poultry E. coli isolates, respectively [34]. These data 
collectively highlight that prevalence of class I integrons 
in E. coli are consistently above 10% in food-producing 
animals [31–32].

The AMR phenotypes revealed differences between E. 
coli isolates with and without class I integrons. Isolates 
positive for the intI1 gene exhibit a significant increase in 
resistance rates, particularly to florfenicol, tetracycline, 
trimethoprim, sulfisoxazole, and streptomycin, along 
with a greater likelihood for MDR. Prior investigations 
elucidated that the assimilation of class I integrons pre-
disposes bacteria to an influx of exogenous genetic ele-
ments, thereby fortifying AMR defenses and facilitating 
MDR development [35]. Nonetheless, isolates with class 
I integrons exhibit significantly diminished resistance to 
chloramphenicol as compared to those devoid of such 
mobile genetic elements. This phenomenon indicates the 
intricate dynamics governing AMR and advocates for an 
in-depth exploration of the underlying mechanisms.

A comparative analysis of the AMR phenotypes and 
genotypes of intI1-positive E. coli isolates determined 
similar resistance against sulfonamides and trimethoprim 
likely due to the close association of GCs within class I 
integrons. However, the resistance profiles of amino-
glycosides and β-lactams were identified inconsistent 
with the genotypes. The aminoglycoside- and β-lactam-
specific ARGs in these isolates may be unexpressed, con-
tributing to the discrepancy [36]. Furthermore, several 
robust correlations between the AMR phenotypes and 
genotypes of E. coli suggest that certain resistance pro-
files were determined by genotypes [37]. Conversely, 
anomalies were observed wherein certain isolates exhib-
ited resistance phenotypes absent of corresponding 
ARGs. This phenomenon may be related to the ARG 
genetic linkage, co-selection with different ARGs and 
some unknown mechanisms so far [38].

In this study, GCs encoding dfr and aadA genes 
emerged as the predominant constituents of the class 
I integrons of E. coli, a phenomenon echoed in diverse 
Gram-negative bacteria, encompassing species like 
Aeromonas in aquatic environments, Salmonella in poul-
try, and Klebsiella pneumoniae in human hosts [39, 40, 
41]. The stability of these two GCs is noteworthy, typi-
cally occupying the prime locus following intI1, thereby 
facilitating global dissemination with class I integrons, 
inclusive in absence of selective pressures [42]. Further-
more, aac(6’)-Ib and aac(3)-VIa encoding GCs were 
present in three strains, aligning with previous reports of 
GCs as frequent constituents within class I integrons in 
divergent regions, such as China and the USA [43–44]. 

Table 2 Sources and sequence types of 59 classic class I 
integron-carrying E. Coli isolates and the arrangement of gene 
cassettes
Sources Sequence

types
Number
(n = 59)

Gene cassette arrays

hospital patients ST131 4 dfrA17-aadA5 (n = 20)
ST1193 1
ST141 2
ST8189 3

pig samples ST155 1
ST88 3
ST101 3
ST2179 1

poultry samples ST117 2
hospital patients ST1196 4 dfrA12-aadA2 (n = 16)
pig samples ST201 1

ST641 3
ST3944 1
ST7508 1
ST6422 1
ST2179 2
ST165 1

poultry samples ST7508 2
hospital patients ST10 2 dfrA1-aadA1 (n = 13)

ST73 1
pig samples ST156 1

ST349 6
ST1431 1

poultry samples ST7285 1
ST156 1

pig samples ST410 1 dfrA7 (n = 5)
ST101 1
ST133 2

poultry sample ST101 1
pig samples ST1914 1 aac(6’)-Ib (n = 3)

ST9022 1
poultry sample ST720 1
pig samples ST1286 1 aadA1-aac(3)-VIa (n = 2)

ST1485 1
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Interestingly, non-standard class I integrons detected in 
38 isolates were characterized by the absence of the con-
ventional 3’ CS (qacEΔ1 + sul1), linkages with sul2 or sul3 
genes within the 3’ CS, or only containing the integrase 
gene intI1. Previous reports confirmed the widespread 
presence of non-classical class I integrons in bacterial 
populations from humans and food-producing animals 
[45–46].

Class I integrons with related GCs were probably 
spread by vertical transfer between different reservoirs 
of human and animal origin [47–48]. Insights into the 
regional dispersion patterns and phylogenetic correla-
tions of individual isolates can be discerned through 
molecular techniques like MLST [49]. Also, the ST des-
ignations can be useful to characterize and monitor ver-
tical transmission of disease-causing and AMR lineages 
of bacteria [50–51]. In the present analysis, among the 

93 intI1-positive E. coli isolates, 39 distinct STs were 
identified, including three previously unidentified STs, 
demonstrating considerable heterogeneity among E. 
coli isolates possessing class I integrons. Notably, 8.6% 
of these isolates were classified as ST10, and detected in 
pigs, poultry, and human populations. Previous studies 
have identified this ST in various sources, including food-
producing animals and retail meats, extending to human 
samples in multiple countries like Germany, Denmark, 
Ireland, and Spain, often associated to MDR [52, 53, 54]. 
Furthermore, ST131 has garnered attention as a prevalent 
lineage among MDR E. coli isolates [55]. In this research, 
ST131 emerged as a dominant ST in human subjects, but 
were non-existent in food-producing animals. This distri-
bution pattern of various STs in E. coli with class I inte-
grons suggests the potential of clonal propagation. The 
global spread of certain high-risk E. coli clones, especially 

Fig. 5 Genetic environment of class I integrons with the most frequent GCs in the genomes of E. coli isolates. (A) Genetic environment of class I integrons 
with the GC array dfrA17-aadA5. (B) Genetic environment of class I integrons with the GC array dfrA1-aadA1. Arrows indicate the direction of transcription. 
Regions of > 90% homology are shaded in gray. Gene families are differentiated by different colors. * means missing the C-terminus
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ST10 and ST131, known for carrying MDR determinants 
and mobile genetic elements, poses a significant threat 
to both veterinary and human healthcare [52, 53, 54, 55]. 
This situation necessitates rigorous monitoring strate-
gies, aligning with the “One Health” approach [56]. These 
findings add to the global database of E. coli STs associ-
ated with class I integrons and provides a basis for track-
ing the spread of these resistant strains.

In the present study, gene sequence alignment identi-
fied fragments related to class I integrons and revealed 
the presence of insertion sequences and transposons 
from multiple families located at various sites. Members 
of the IS6 family, particularly noted for associations with 
GCs of the dfrA17-aadA5 combination, are critical con-
tributors to the spread of resistance markers in Gram-
negative bacteria [57]. Moreover, members of the Tn3 
family emerged as prevalent components of the trans-
posons of the E. coli isolates, consistent with previous 
reports [58]. Additional insertion sequence and trans-
poson families, including IS1, IS21, IS91, IS110, IS256, 
IS6100, TniB, and Tn1696, theoretically capable of mobi-
lization of class I were also identified [59]. These obser-
vations suggest worldwide spread of class I integrons 
among human and food-producing animal populations, 
highlighting the need for enhanced surveillance and con-
trol strategies. The findings expand the current database 
of mobile genetic elements associated with integrons, 
contributing to the understanding of their role in AMR 
gene dissemination. In the meanwhile, the study is pro-
vides a detailed analysis of class I integrons in E. coli iso-
lates from both humans and food-producing animals in a 
rural area of Zhejiang Province, China. This geographical 
focus adds to the global understanding of AMR dynamics 
in a region, broadening the scientific knowledge on inte-
gron distribution.

Plasmids, particularly conjugative plasmids, like class 
I integrons, play a crucial role in the horizontal transfer 
of ARGs and are key contributors to the spread of AMR. 
While our study provides valuable insights into the prev-
alence and characteristics of class I integrons in E. coli 
isolates from humans and food-producing animals, it is 
important to provide a more comprehensive understand-
ing of the mechanisms underlying the spread of plasmid 
and associated resistance genes among different res-
ervoirs of human and animal origin in the next further 
studies.

Conclusions
In this study carried out in a rural area of Zhejiang 
Province, China, from 2019 to 2022, we determined 
a relatively low prevalence of class I integrons of 12.9% 
among E. coli from humans and food-producing ani-
mals. Among the intI1-positive E. coli isolates, most of 
them possessed classic class I integrons with six distinct 

GC arrangements. MLST analysis showed a high hetero-
genicity, inclusive of three previously unidentified STs. 
Notably, ST10 emerged as the predominant genotype 
in samples from hospitalized patients, pigs, and poul-
try. Genomic analysis further identified six insertion 
sequences (IS1, IS6, IS21, IS91, IS110, and IS256) and one 
transposon (Tn3) in proximity to the integrons. A com-
prehensive exploration of the NCBI database affirmed 
the presence of a diverse array of insertion sequences 
and transposons within the integron sequences of E. 
coli isolates from animals, meat products, humans, and 
various environmental samples across Asia, Europe, and 
North America. These findings collectively offer insights 
into the potential risks associated with the transmission 
of class I integrons among bacteria, thus underscoring 
global implications for both humans and food-producing 
animals.
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