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Abstract

Background: The increase and spread of virulent-outbreak associated, methicillin and vancomycin resistant (MRSA/
VRSA) Staphylococcus aureus require a better understanding of the resistance and virulence patterns of circulating
and emerging strains globally. This study sought to establish the resistance phenotype, and strains of 32 non-
duplicate clinical MRSA and MSSA S. aureus isolates from four Kenyan hospitals, identify their resistance and
virulence genes and determine the genetic relationships of MRSA with global strains.

Methods: Antimicrobial susceptibility profiles were determined on a Vitek 2, genomic DNA sequenced on an
Illumina Miseq and isolates typed in-silico. Resistance and virulence genes were identified using ARIBA and
phylogenies generated using RAxML.

Results: The MRSA isolates were 100% susceptible to vancomycin, teicoplanin, linezolid, and tigecycline. Nine
distinct CC, 12 ST and 15 spa types including the novel t17826 and STs (4705, 4707) were identified with CC8 and
CC152 predominating. MRSA isolates distributed across 3 CCs; CC5-ST39 (1), CC8 – ST241 (4), a novel CC8-ST4705
(1), ST8 (1) and CC152 (1). There was > 90% phenotype-genotype concordance with key resistance genes identified
only among MRSA isolates: gyrA, rpoB, and parC mutations, mecA, ant (4′)-lb, aph (3′)-IIIa, ermA, sat-4, fusA, mphC and
msrA. Kenyan MRSA isolates were genetically diverse and most closely related to Tanzanian and UK isolates. There
was a significant correlation between map, hlgA, selk, selq and cap8d virulence genes and severe infections.

Conclusion: The findings showed a heterogeneous S. aureus population with novel strain types. Though limited by
the low number of isolates, this study begins to fill gaps and expand our knowledge of S. aureus epidemiology
while uncovering interesting patterns of distribution of strain types which should be further explored. Although
last-line treatments are still effective, the potential for outbreaks of both virulent and resistant strains remain,
requiring sustained surveillance of S. aureus populations.
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Background
Staphylococcus aureus is a gram-positive bacterium re-
sponsible for a broad spectrum of clinical infections ran-
ging from benign skin rashes to necrotizing tissue and
pulmonary lesions. The increasing prevalence of
multidrug-resistant methicillin and vancomycin-resistant

S. aureus strains (MRSA and VRSA) limit available
therapeutic options making these infections challenging
to manage. Since the emergence of methicillin resistance
(MRSA) in the 1940s, epidemics caused by successful
MRSA [1, 2] have been observed, e.g. USA 300, a highly
virulent MRSA strain that emerged in the USA and is
currently associated with community outbreaks globally
[3] and E-MRSA 15 which emerged in the UK and
caused various hospital outbreaks [4]. The clonal success
is attributed to factors that enhance binding to host tissues
and the acquisition of virulence genes, e.g., USA 300
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which has acquired the arginine catabolic mobile element,
sek and seq virulence genes [5–7]. Nosocomial outbreaks
of MRSA are frequent in daycare centers, nursing homes,
and critical care units [8] and with the emergence of more
virulent CA-MRSA [9], S. aureus outbreaks can signifi-
cantly increase morbidity and mortality.
S. aureus can exhibit resistance to several antibiotics

due to genes encoded on the chromosome and the ac-
quisition of resistance genes by horizontal transfer of in-
dividual genes or resistance islands from other S. aureus
isolates and other bacterial species, e.g., Van genes ac-
quired from Vancomycin-resistant enterococci (VRE) on
mobile elements [10]. The implications of acquired drug
resistance in bacteria to public health are profound. In
Kenya, previously manageable diseases such as typhoid
and cholera have caused health crises due to the emer-
gence of highly drug-resistant strains of H58 Salmonella
typhi [11] and Vibrio cholera [12, 13] that quickly dom-
inate endemic antibiotic sensitive strains both locally
and globally [14]. Monitoring of emerging resistance pat-
terns and genes is therefore essential for the manage-
ment of new resistant strains with outbreak potential.
Phenotypic testing is the gold standard for determining

the antibiotic susceptibility of a bacterium [15] but is lim-
ited by the number of antibiotics one can reasonably test
in the laboratory. Genomic analysis is ideal for detecting
resistance against multiple antibiotics, identifying new re-
sistance genes, mutations or new synergistic relationships
affecting resistance genes. Genomic testing is best when
used in tandem with existing phenotypic data since it can
be challenging to predict resistance based solely only on
the presence or absence of resistance genes [16, 17] due to
redundant antibiotic resistance mechanisms and the im-
pact of mutations in resistance genes, modifiers of gene
expression and accessory genes on phenotypic resistance.
Multilocus sequence typing (MLST) and typing of the

staphylococcal protein A (spa) gene have been widely used
to identify different S. aureus strain types [18, 19]. For
MRSA, typing of the staphylococcal cassette chromosome
(SCCmec) which harbors the gene encoding methicillin re-
sistance provides additional strain discrimination [20–22].
Studies on S. aureus isolates from Kenya have focused
mainly on antimicrobial susceptibility testing [23, 24] and
strain typing with limited testing for resistance genes and
virulence determinants which can influence infection sever-
ity. The virulence genes reported in the few Kenyan studies
looking at both S. aureus infections and carriage include
Panton-Valentine leukocidin (pvl), Toxic shock syndrome
(tsst-1), exfoliative toxin A and enterotoxin A with a not-
ably high prevalence of pvl reported [25, 26]. These studies
were, however, limited to four healthcare institutions in
close geographic proximity. Therefore, there is limited in-
formation on the genomic diversity and distribution of the
S. aureus population across Kenya.

This study sought to fill this gap by characterizing
both resistance and virulence determinants of clinical
isolates from different geographical areas in Kenya and
identifying the relationships between Kenyan MRSA
strains and known global strains. By broadening our un-
derstanding of the S. aureus population in Kenya, this
study provides baseline epidemiological data on the type
distribution, drug resistance patterns and emerging viru-
lent strains in Kenya.

Results
Of the 17 antibiotics tested only 16 had complete results
for all isolates. All isolates were resistant to at least one
of the drugs in the panel of 16 antibiotics analyzed. No
resistance was detected against vancomycin, teicoplanin,
tigecycline or nitrofurantoin in any isolate while all iso-
lates were resistant to penicillin (Additional file 1). Eight
isolates were classified as MRSA and confirmed to pos-
sess the mecA gene by PCR.
There was high sensitivity to vancomycin, linezolid,

teicoplanin, nitrofurantoin and tigecycline among all iso-
lates. The MRSA isolates were multidrug resistant with
100% resistance to erythromycin, oxacillin, cefoxitin and
had varied susceptibilities to rifampicin (50%) and < 25%
susceptibility to the remaining drugs tested. In contrast,
among the 24 MSSA isolates, > 70% were susceptible to
a majority of antibiotics tested with reduced susceptibil-
ity (< 75%) to trimethoprim (71%) and rifampicin (67%)
(Additional file 1).
Resistance genes identified are listed in Additional file 1,

and their distribution is shown on the heat map in Fig. 1.
Phenotype-genotype concordance of 90–99% was observed.
Discordance was observed for rifampicin and aminoglyco-
sides drug classes. The genes 23S rRNA and tet38, import-
ant in macrolides and tetracycline resistance [27, 28] and
the multigene regulators important for multidrug resistance
and virulence gene expression arlR/arlS, mgrA [29–31]
were ubiquitously expressed among the isolates and are not
indicated on the figure. All the MRSA isolates had mecA
mediated methicillin resistance. The multidrug resistant
phenotype of the MRSA isolates was supported by the pres-
ence of multiple antibiotic resistance genes which varied in
number and composition by the MRSA lineages (Fig. 1).
The resistance genes detected among MRSA ranged from 9
to 14 compared to 1–5 for MSSA isolates. The genes asso-
ciated only with MRSA isolates were the ant (4′)-lb, aph
(3′)-IIIa, ermA, sat-4, fusA, mphC, msrA genes, the quin-
olone resistance-conferring mutations on parC (S80F) and
gyrA (S84 L) and the rifampicin resistance mutations in
rpoB. TetK, dfrG, and dfrC were found among both MSSA
and MRSA.
Isolate typing using the various methods indicated

great diversity among the isolates with identification of 9
distinct clonal complexes (CC5, 8, 15, 22, 80, 88, 121,

Kyany’a et al. BMC Microbiology          (2019) 19:245 Page 2 of 11



152, 580), 12 ST types (ST8, 15, 22, 39, 80, 121, 152,
241, 580, 1633, 4705, 4707), 15 spa types (t005, t007,
t037, t064, t084, t186, t272, t314, t355, t1476, t2029,
t4198, t5941, t13194 and a novel spa type, assigned
t17826) (Table 1). Among the MRSA, three known
staphylococcal cassette chromosome types, SCCmec_
type2A, 3A and 2B and a novel divergent SCCmec elem-
ent were identified.
A majority of the isolates belonged to CC152 (9/32)

and CC8 (9/32). MRSA in this study classified as CC5, 8
and 152 with a majority (4/9) belonging to ST241 and
spa type t037. Two novel STs assigned ST4705 (CC8,
MRSA) and ST4707 (CC5, MSSA) by PubMLST [32]
were reported. Spa typing indicated t355 as the domin-
ant spa type (9/32; 28.1%). The eight MRSA isolates
belonged to 5 spa types; t007 (1), t037 (4), t2029 (1),
t1476 (1) and t2029 (1). MSSA isolates had greater spa
diversity than MRSAs with t005, t186, t314, t4198, t5941
represented by single isolates.
Some strain types were found in only particular geo-

graphical regions, for example, ST88 and ST241 detected
in Kisumu County only, in contrast to CC152 which
showed a wide geographic distribution. Isolates from
Kericho County were the most heterogeneous based on
CC/ST types.
Phylogenetic analysis of the Kenyan isolates indicated

SNP differences of 5–27,562 SNPs and clustered the iso-
lates by ST or CC types. MRSA isolates were distributed
across four clusters. The largest MRSA cluster consisting
of SAKEN1, 3, 4, 5, and 27 clustered within CC8 with

MSSA isolates. SAKEN004 and SAKEN005 isolates had
only 5 SNP differences and were from patients admitted
in the same hospital at the same time. SAKEN004, 005,
027 had SNP differences between 5 and 34 SNPs, an in-
dication that they were closely related but distinct iso-
lates (Fig. 2). Kenyan MRSA isolates were genetically
diverse and most closely related to MRSA073B from
Tanzania, MRSA252 UK, and TW20_582_UK (Fig. 3).
The virulence genes identified among the isolates are

indicated in Fig. 4 and grouped according to function;
pore formers, immune evasion, toxins, and adhesins.
There was no significant difference in the numbers of
virulence genes between MRSA and MSSA isolates (p =
0.09), but there was a significant association (p < 0.05)
between the severity of the infection and the five viru-
lence genes; map, hlgA, selk, selq, and cap8d. Map, selk,
selq, hlgC, vwbp virulence genes were significantly asso-
ciated with CC8 (p < 0.00005) but showed varied distri-
bution within the CC. There was a strong association
between isolates in CC152 and the presence of LukS_PV,
LukF_PV and hlb and the absence of hlgc, vwbp, capIh,
chp, isdA, isdD, cap8h and cap8K (p < 0.00005).

Discussion
In this study, antimicrobial resistance phenotypes and
genotypes and strain types of S. aureus isolates from
diverse geographical areas in Kenya were investigated
and phylogenetic relationships inferred between the
isolates and known global and regional strains based
on whole genome sequences. Virulence genes were

Fig. 1 Core genome SNP phylogeny and heat map of antibiotic resistance genes identified. MRSA isolates are shown in blue and MSSA isolates
are in black. Green denotes the presence and red the absence of the genes listed. Ubiquitously expressed genes are not indicated (S. aureus 23S,
arlR, arlS, mgrA, and tet38)
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identified, and their presence relative to the clonal
complexes and clinical presentation examined for pos-
sible correlations to identify genetic predictors of
hyper-virulence.
Phenotypic antimicrobial susceptibility testing indi-

cated high sensitivity to vancomycin, linezolid, teicopla-
nin, nitrofurantoin and tigecycline among all isolates
consistent with previous observations by Gitau et al.
[33]. High levels of resistance to benzylpenicillin, sulfa-
methoxazole, rifampicin, tetracycline, and erythromycin
have been reported by previous Kenyan [23, 25] and Af-
rican [34] studies. The high levels of resistance to these
commonly used antibiotics could be linked to Kenya

having a high prevalence of tuberculosis (TB), HIV and
malaria. Rifampicin is among the first-line agents for the
treatment of TB [35] infections in Kenya which is linked
to HIV infection [36] and is also used as an antimalarial
drug. The MRSA isolates bearing the mutation in the
rpoB gene conferring resistance to rifampicin were from
Kisumu County which is endemic for malaria and has a
high prevalence of HIV [37]. Previous Kenyan studies
have reported SXT resistance rates of 40% [25] and 62%
[23]. In this study, the high-level resistance (75%) to
sulfamethoxazole (SXT), mediated by both chromosom-
ally encoded dfrC and plasmid-borne dfrG genes may be
driven by the use of SXT in HIV prophylaxis [37–39].

Table 1 Table of isolate characteristics

Isolate ID Clonal complex ST spa type SSC mec REGION CAI/HAIb IP/OP

MRSA SAKEN001 8 241 37 SCCmec_type_III (3A) Kisumu CAI In-patient

SAKEN003 8 4705a 2029 SCCmec_type_III (3A) Kisumu CAI Outpatient

SAKEN004 8 241 37 SCCmec_type_III (3A) Kisumu HAI In-patient

SAKEN005 8 241 37 SCCmec_type_III (3A) Kisumu CAI In-patient

SAKEN008 152 152 355 SCCmec_type_IVa (2B) Nairobi CAI Out-patient

SAKEN010 5 39 7 SCCmec_type_II (2A) Kisumu CAI Out-patient

SAKEN027 8 241 37 SCCmec_type_III (3A) Kisumu HAI In-patient

SAKEN031 8 8 1476 novel cassette: mecA present Nairobi CAI Out-patient

MSSA SAKEN017 15 15 84 n/a Kericho CAI Out-patient

SAKEN024 22 22 5 n/a Kericho CAI Out-patient

SAKEN032 80 80 13,194 n/a Kericho CAI Out-patient

SAKEN026 121 121 314 n/a Kericho CAI Out-patient

SAKEN009 152 152 355 n/a Kericho CAI In-patient

SAKEN016 152 152 355 n/a Kericho CAI Out-patient

SAKEN025 5 4707a 17826a n/a Kisumu CAI Out-patient

SAKEN030 8 8 unknown n/a Kisumu CAI In-patient

SAKEN019 15 15 unknown n/a Kisumu CAI In-patient

SAKEN018 88 88 186 n/a Kisumu CAI Out-patient

SAKEN029 121 121 272 n/a Kisumu CAI Out-patient

SAKEN002 152 152 355 n/a Kisumu CAI Out-patient

SAKEN011 8 8 64 n/a Kisumu CAI In-patient

SAKEN012 8 8 64 n/a Kisumu CAI In-patient

SAKEN021 80 80 13,194 n/a Kisumu CAI Out-patient

SAKEN020 152 152 355 n/a Kisumu CAI In-patient

SAKEN028 580 580 unknown n/a Malindi CAI Out-patient

SAKEN013 22 22 84 n/a Nairobi CAI Out-patient

SAKEN007 80 80 5941 n/a Nairobi CAI In-patient

SAKEN006 121 121 4198 n/a Nairobi CAI In-patient

SAKEN014 152 152 355 n/a Nairobi HAI In-patient

SAKEN015 152 1633 355 n/a Nairobi HAI In-patient

SAKEN022 152 152 355 n/a Nairobi CAI Out-patient

SAKEN023 152 152 355 n/a Nairobi CAI In-patient
adenotes a novel ST and spa type. bCAI community-acquired infection, HAI hospital-acquired infection. MRSA isolates are shown in bold
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MSSA isolates were 100% susceptible to quinolones
consistent with the high susceptibility rates indicated in
other Kenyan studies [40–42] while MRSA isolates were
25% susceptible, markedly lower than a previous study
that reported a susceptibility of 55.9% to ciprofloxacin
among Kenyan MRSA [43] suggesting growing resist-
ance of MRSA to quinolones in Kenya. Quinolone resist-
ance was mediated by the resistance-conferring
mutations on parC (S80F) and gyrA (S84 L) [44].
This study reports 62.5% susceptibility to tetracyclines

which is higher than the 20–50.3% reported in Kenya, and
other African studies [42, 45]. The previously observed in-
crease in resistance to tetracycline in Africa (< 75%) was
linked to increased use of tetracycline in animal hus-
bandry [46], but the reduction in resistance observed in
this study among human clinical isolates could be an indi-
cator that tetracycline is being used less to treat human in-
fections. TetK and TetM genes are reported [42] to be
predominant in Sub-Saharan Africa, but this study has
shown that TetK is the principal mediator of resistance
and could be useful as a marker to monitor tetracycline
resistance in Kenya.
Strain typing revealed 12 STs and 9 CCs among the iso-

lates confirming the considerable heterogeneity previously
described among S. aureus both regionally and globally
[25, 34, 47, 48]. Spa typing showed higher discriminatory
power than ST with multiple spa types belonging to the
same STs. Of the major lineages described for MRSA,

MRSA isolates in the present study belonged to CC8 and
CC5, both of which are associated with global outbreaks
[1]. CC8 was composed of both MSSA and MRSA isolates.
CC5/ST241, t037 and ST 239, t037 are the predominant
MRSA clones described in previous studies on Kenyan
isolates from Nairobi and its environs [25, 47]. In this
study, a majority of MRSA isolates also belonged to
ST241, t037 even though they were from sites in Western
Kenya situated ~ 300 km from Nairobi suggesting a wide-
spread geographical distribution of the CC5/ST241 MRSA
strain in Kenya. Schaumburg et al. [34] reported ST 241
MRSA clone to also be prevalent in Africa though with
varying SSCmec types; Senegal (SSCmec III), Tunisia
(SSCmec III), Niger (SSCmec III and V) Nigeria (SSCmec
III and IV) and Algeria (SSCmec III) [49]. Even though
globally most HAI-MRSA are SCCmec type I-III and CAI-
MRSA SCCmec types IV and V [50, 51], the hospital asso-
ciated strain ST 241 SCCmec III [49] was identified in
both HAI and CAI infections in the present study and a
previous Kenyan study [47]. SCCmec typing may, there-
fore, have limited utility as a marker of CAI or HAI in the
region.
The Kenyan isolates grouped distinctly into several

clonal complexes. The CC8 cluster was composed of
two clades ST8 (MSSA) and ST241 (MRSA) with the
two clades sharing a recent common ancestor. Studies
have shown that MSSA isolates of CC8 act as reservoirs
for MRSA pending acquisition of the staphylococcal

Fig. 2 Core genome SNP phylogeny of Kenyan S. aureus isolates. MRSA isolates are in blue, and MSSA isolates are in black. MRSA isolates are
distributed across four clusters
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cassette [52, 53]. Relationships between isolates of this
study and known global strains using core genome SNPs
revealed close clustering of a majority of MRSA strains
in this study with the well-known strains. The predom-
inant CC8 MRSA isolates in this study were closely re-
lated to the CC8 TW20 strain 582, which is a successful
HAI MRSA clone from London [4], known for its high
transmissibility and multi-drug resistant properties due
to a plethora of resistance genes carried on mobile ele-
ments [54]. CC8 MRSA strains have been linked to
community-acquired infections and include other well-
known strains such as USA 300 which is a lineage-
linked to the acquisition of SSCmec IV, pvl and seq and
sek genes [5, 55]. MRSA isolates in this study were also
closely related to MRSA252 from UK and MRSA_
0411776 from Tanzania indicating the ease of spread of
S. aureus strains across regional and international
borders.
There was a significant correlation between the five

virulence genes: map, hlgA, selk, selq and cap8d and
severe infections indicating their potential usefulness
as markers of infection severity in the region. While
CC8 isolates were strongly associated with the pres-
ence of multiple virulence genes, CC152 was in con-
trast associated with an absence of these virulence

genes but the presence of pvl, a bi-component leuko-
cidin (lukF_PV and lukS_PV) destroying leukocytes
and causing tissue necrosis. Pvl predominant ST152
clones have been described in Nigeria [56] and Mali
[57] and Europe [58] indicating a global distribution
of this clone. The MRSA prevalence in Kenya ranges
widely from 3 to 30% [24, 33], and although, as this
study has shown, most S. aureus infections remain
relatively easy to treat, the morbidity associated with
hypervirulent strains could be managed better by un-
derstanding the circulating strains and their virulence
gene profiles.
Despite the low sample numbers, this study does begin

to fill gaps and expand our understanding of the epi-
demiology of S. aureus by providing data on clinical iso-
lates of S. aureus from other parts of the country as
previous studies in Kenya have been limited to four
healthcare institutions within close geographic proxim-
ity. The isolates in this study, collected over a 3-year
period (2015 to Aug 2018), uncover patterns of distribu-
tion of different strain types that are interesting and will
be explored further as part of the ongoing surveillance
to examine whether the observed S. aureus distribution
patterns hold and other patterns emerge over time with
more isolates.

Fig. 3 Core genome phylogeny of MRSA isolates from this study (in blue) and known global and regional strains. Although the isolates are
genetically diverse, Kenyan MRSA isolates are closely related to Tanzanian ad UK strains
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Conclusion
This study provides insight into the diversity, distribution
and resistance profiles of Kenyan MSSA and MRSA iso-
lates and their relatedness to global MRSA strains. Al-
though limited by the low numbers of isolates this study
provides a baseline for monitoring S. aureus strain types
and associated resistance and virulence patterns to create
risk maps for S. aureus infections in Kenya. The study has
identified multidrug resistance genes carried by Kenyan S.
aureus isolates and provided a basis to track trends in
drug resistance and identify emerging resistance patterns
and novel strain types. The evidence of co-occurrence of
methicillin resistance and virulence genes portend the
emergence of highly virulent MRSA infections that could
be outbreak-associated. In the advent of increasing drug
resistance in Kenya, continued surveillance using both
phenotype and genotype data is recommended to identify
country-specific data on drugs effective for treatment for
both MRSA and MSSA to reduce morbidity given the
unique backdrop of other endemic diseases.

Materials and methods
Bacterial isolates identification and drug susceptibility
testing
Non- duplicate clinical S. aureus isolates from patients en-
rolled in an ongoing surveillance study (WRAIR#2089,
KEMRI#2767) in four hospitals in Kisumu, Kericho, Mal-
indi, and Nairobi counties in Kenya were analyzed for this
study. S. aureus isolates were identified based on character-
istic beta hemolysis, catalase, and coagulase positive pheno-
types. Isolate identity was confirmed and antimicrobial

susceptibility testing performed on the Vitek 2 platform
(bioMérieux, Hazelwood, MO, USA) using the GP identifi-
cation and the P580 antibiotic susceptibility card which
tests a panel of 17 drugs (Benzylpenicillin, oxacillin, genta-
micin, tobramycin, levofloxacin, moxifloxacin, erythro-
mycin, clindamycin, linezolid, teicoplanin, vancomycin,
tetracycline, tigecycline, nitrofurantoin, fusidic acid, rifam-
picin, trimethoprim/sulfamethoxazole). MRSA was identi-
fied using CLSI break-points for oxacillin MIC and
cefoxitin screen and validated by PCR for the presence of
the mecA gene using published primers [22]. All MRSA iso-
lates identified between April 2015 and August 2018 and a
selection of methicillin susceptible S. aureus (MSSA) iso-
lates from each county totaling 32 isolates (8 MRSA, 24
MSSA) were included in this study. The isolates were from
both in- and out-patients. The infections were classified as
severe if the patient was admitted in the hospital (17/32,
53.2%) or as mild if they were treated in the out-patient de-
partment (15/32, 46.9%). 87.5% (28/32) of the isolates were
from patients with community-acquired infections and
12.5% (4/32) with hospital-acquired infections as per the
CDC classification [59] (Table 1).

Whole genome sequencing and sequence analysis
Genomic DNA was extracted from freshly cultured S.
aureus isolates using the ZR Fungal/Bacterial DNA
MiniPrep Kit (Zymo research, California, United States).
DNA concentrations were determined using the Qubit
(Thermo Fisher Scientific, Massachusetts, United States)
and 1 ng of DNA used for library preparation with the
Nextera XT kit (Illumina Inc. San Diego, California,

Fig. 4 Core genome phylogeny and a heat map showing the distribution of virulence genes among study isolates. Green denotes the presence
and red indicates the absence of the gene. Virulence factors are grouped according to function. Genes that were ubiquitously expressed among
the isolates are not shown. MRSA isolates are shown in blue and MSSA isolates are in black
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United States) as per manufacturer’s instructions to gen-
erate 300 bp paired-end libraries. Libraries were se-
quenced on an Illumina MiSeq platform (Illumina Inc.
San Diego, California, United States). Raw reads were
trimmed for quality and de-novo assembly performed
using Newbler [60]. Genome assemblies were uploaded
onto NCBI under BioProject ID PRJNA481322.

Isolate typing
In-silico spa typing was performed on assembled ge-
nomes using SpaTyper 1.0 hosted on the Centre for
Genome Epidemiology (CGE) https://cge.cbs.dtu.dk/ser-
vices/spatyper/ [61]. In-silico MLST sequence type (ST)
were obtained on https://cge.cbs.dtu.dk/services/MLST/
[62] at the Centre for Genomic Epidemiology and iso-
lates grouped into clonal complexes using the BURST
clustering algorithm available on http://eburst.mlst.net/,
allowing a minimum of 6 identical loci for group defin-
ition. Sequences of novel STs were submitted to https://
pubmlst.org/saureus/ for ST assignment [63]. Staphylo-
coccal cassette types for the MRSA isolates were deter-
mined in-silico using SCCmecFinder 1.2 hosted on
https://cge.cbs.dtu.dk/services/SCCmecFinder/ [64].

Antimicrobial resistance and virulence genes
identification
Genes coding for antimicrobial resistance and virulence
were identified using ARIBA [65] (version 2.11.1) employ-
ing CARD [66] (version 3.0.1) https://card.mcmaster.ca as
the reference database. To investigate the presence of
virulence factors, the whole genomes of the Kenyan iso-
lates were screened for 85 known virulence genes using
the Virulence Factors Database (VFDB). AMR gene distri-
bution and heat maps were generated and visualized on
Microreact at https://microreact.org/ [67].
Phylogenetic analysis was performed to infer relation-

ships between the eight Kenyan MRSA and eight known
global strains; selected to include at least one whole gen-
ome for all the sequence types identified in the Kenyan
isolates. The reference strains used in the phylogenetic
analysis are listed in the Additional file 2. High-quality
SNPs were called, and maximum likelihood phylogeny
inferred using RAxML [68].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12866-019-1597-1.

Additional file 1. Table of susceptibility testing results obtained from
the Vitek 2 platform and genotypes detected using ARIBA. MICs were
interpreted using the CLSI guidelines and expert deductions on the Vitek
Advanced Expert System (AES). * indicates forced resistance by the AES.
**denotes presence of only the ubiquitous resistance genes in the
isolates (S. aureus 23S, arlR, arlS, mgrA and tet38). Isolates in bold are

confirmed MRSA validated as MecA positive by PCR testing. Fusidic acid is
not shown as results were missing for some isolates.

Additional file 2. List of reference genomes used in this study.
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