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Abstract

Background: Streptomyces lividans is an appealing host for the production of proteins of biotechnological interest
due to its relaxed exogenous DNA restriction system and its ability to secrete proteins directly to the medium
through the major Sec or the minor Tat routes. Often, protein secretion displays non-uniform time-dependent
patterns. Understanding the associated metabolic changes is a crucial step to engineer protein production.
Dynamic Flux Balance Analysis (DFBA) allows the study of the interactions between a modelled organism and its
environment over time. Existing methods allow the specification of initial model and environment conditions, but
do not allow introducing arbitrary modifications in the course of the simulation. Living organisms, however, display
unexpected adaptive metabolic behaviours in response to unpredictable changes in their environment. Engineering
the secretion of products of biotechnological interest has systematically proven especially difficult to model using
DFBA. Accurate time-dependent modelling of complex and/or arbitrary, adaptive metabolic processes demands an
extended approach to DFBA.

Results: In this work, we introduce Adaptive DFBA, a novel, versatile simulation approach that permits inclusion of
changes in the organism or the environment at any time in the simulation, either arbitrary or interactively
responsive to environmental changes. This approach extends traditional DFBA to allow steering arbitrarily complex
simulations of metabolic dynamics. When applied to Sec- or Tat-dependent secretion of overproduced proteins in
S. lividans, Adaptive DFBA can overcome the limitations of traditional DFBA to reproduce experimental data on
plasmid-free, plasmid bearing and secretory protein overproducing S. lividans TK24, and can yield useful insights on
the behaviour of systems with limited experimental knowledge such as agarase or amylase overproduction in S.
lividans TK21.

Conclusions: Adaptive DFBA has allowed us to overcome DFBA limitations and to generate more accurate models
of the metabolism during the overproduction of secretory proteins in S. lividans, improving our understanding of
the underlying processes. Adaptive DFBA is versatile enough to permit dynamical metabolic simulations of
arbitrarily complex biotechnological processes.
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overproduction
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Background
Streptomycetes possess distinctive characteristics that
make them an appealing model system for engineering
overproduction of biotechnologically interesting prod-
ucts: they are capable of producing a large array of anti-
biotics and other compounds of interest, and
interestingly, large amounts of extracellular proteins [1].
This is coupled with a relaxed DNA restriction system,
which facilitates employment of functional plasmids and
cloning and propagating heterologous DNA sequences
[1, 2]. In addition, S. lividans has been shown to effi-
ciently secrete overexpressed proteins [1, 3]. Taken to-
gether, these properties make it an attractive host for
overproduction of heterologous proteins.
Protein secretion in S. lividans takes place through

two main routes: the major Sec route which exports un-
folded proteins in an ATP-dependent manner and the
minor Tat route which secretes folded proteins and
seemingly depends on a proton gradient or ΔpH [4]
without a consensus cost. Relevant differences have been
identified in the cellular response to Sec- and Tat-
dependent protein secretion, as well as in the secretion
patterns and preference for growth phases [5, 6].
The recent availability of a good quality Genome-scale

Metabolic Network (GSMN) model [6] suitable for S. livi-
dans 66 and its derivatives S. lividans TK21 and S. lividans
TK24 offers the opportunity to address in-depth studies of
the dynamic behaviour of metabolism during protein
overproduction and secretion in S. lividans. Flux Balance
Analysis (FBA) and Dynamic FBA (DFBA) have become a
mandatory part of the metabolic analysis toolbox since
their introduction [5, 7, 8]. Several implementations are
available for carrying out DFBA analyses, each of them
with its own advantages and shortcomings [9].
There are, however, situations where the DFBA approach

falls short of producing the desired results, leading to the
introduction of novel formulations, such as TEAM [10],
which can consider the effect of gene expression. Other sit-
uations where DFBA may fail to produce accurate results
include modelling of initial growth lag; interactive or dy-
namic modifications of the simulation course, such as the
addition of nutrients at specific times (typical of fed-batch
cultures), in arbitrary quantities, whenever their concentra-
tions fall below a specific level, or at arbitrary times (as
might be done in a laboratory or production environment);
the regulated expression of specific routes in response to
environmental (e.g. activation of the stress response), or
growth-related changes (e.g. activation or inhibition of pro-
tein secretion in specific growth phases), simulation of
time-dependent system changes (e.g. light-darkness cycles),
concentration-dependent boundary conditions, and more.
Despite these limitations, little changes have been made to
DFBA since its original publication. As a consequence, a
number of strategies have been explored to apply flux

balance studies, such as limiting analyses to static FBA, run-
ning piece-wise simulations, testing alternative optimization
problems, coupling secretion to glucose uptake, or forcing
switches dependent on nutrient concentration [11–18]
among many others.
DFBA calculations may typically be approached using

the analytical Dynamic Optimization Approach (DOA)
or the stepwise Static Optimization Approach (SOA)
[19]. The DOA approach relies on previous knowledge
of the simulation conditions to transform DFBA into a
non-linear programming model that is solved only once,
and thus, is not suitable for the arbitrary introduction of
system changes at unpredictable points in time since
constraints must be specified beforehand.
This makes SOA better suited to model arbitrary con-

ditions for several reasons: it is scalable to larger meta-
bolic networks, allows use of an instantaneous objective
function which gives better results than an endpoint ob-
jective function [19], and interactive intervention at arbi-
trary simulation points is easier to implement permitting
total automation of complex simulations.
A new, expanded implementation of DFBA should pro-

vide additional versatility to address its major shortcom-
ings: it should facilitate carrying out extended calculations,
accommodate arbitrary system changes, either dependent
on the environment (e.g. conditional or unconditional nu-
trient replenishment or removal, such as feed-back driven
fed-batch systems) or inherent to the modelled system
(e.g. suboptimal strategies, harmonized regulatory re-
sponses such as stress reactions or light-darkness cycles),
and situations that might violate base DFBA assumptions
(e.g. delayed instead of instantaneous or quasi-
instantaneous responses). These additions would allow dy-
namic metabolic modelling of previously untreatable yet
biologically or industrially interesting systems.
Here, we introduce an Adaptive DFBA algorithm that

allows calculation of arbitrarily complex simulations, apply
for the first time advanced statistical methods to mine
relevant data from simulation results and to explore the
construction of predictive models of the evolution of
metabolic fluxes during overproduction of secretory pro-
teins in S. lividans.

Implementation
We have chosen to implement our approach using the
R-based, fully open source sybil system [20], starting
from the sybilDynFBA package. Sybil was chosen over
OpenCOBRA [21] because it has proven more
computer-efficient in our tests, does not require a
MATLAB™ license and follows very closely the well-
known COBRA implementation of DFBA. We use the
SOA approach [5, 7, 8, 19] to solve the time-dependent
flux balance problem in our simulation. At each time
step in the SOA simulation, we have implemented the
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solution of the flux problem using alternative FBA
solvers from sybil. We also provide the choice of adding
a Minimization of the Total Flux (MTF) calculation after
FBA at each step to reduce the impact of multiple opti-
mal solutions in FBA [22].
Solution of the system of ordinary differential equa-

tions (ODE) relies on a library to solve the ODE prob-
lem. We have tested the GLPK [23], CLP [24], LP-
SOLVE [25] and CPLEX [26] libraries with our code in
various systems and hardware architectures.
The method has been tested using known data on the

metabolism of S. lividans, either plasmid-free, pIJ486
plasmid-bearing, or over-expressing and secreting Tat-
and Sec- dependent overexpressed secretory proteins,
and comparing the results with published data [3, 27–
31].
All programming has been done using R and is pub-

licly available on GitHub (see Additional file 1: Table S1
for sample commands to reproduce our results).

Overall description of the algorithm
The Adaptive DFBA algorithm is loosely derived from
pre-existing code. The R implementation, sybilDynFBA
is itself a derivative from dynamicFBA in OpenCOBRA
which it aims to reproduce as closely as possible. Inspec-
tion of both codes allowed us to identify their assump-
tions and implicit limitations, which have been removed
to the extent possible in Adaptive DFBA. The details of
the improved algorithm are described below, emphasiz-
ing its differences with previous implementations.

Pre-processing step
In this step, all input data is validated for proper typing
and validity, values are revised and, data is prepared for
the main computation loop:

Biomass reaction Traditional DFBA code assumed that
the objective function was Biomass. In Adaptive DFBA,
Biomass calculation is decoupled from the objective
function, ensuring proper calculations under unrelated,
uncorrelated or competing objectives, and allowing use
of multiple objectives. The biomass reaction may be spe-
cified as an argument, but if it is not, the model will be
inspected to find a suitable one, only if this fails the first
objective function will be used after issuing a warning.

Exchange reactions Adaptive DFBA removes the re-
quirement to specify substrates and concentrations in
the same order they are defined in the model, which was
implicit in former implementations.
The classical codes assumed that metabolites with zero

concentration were available in excess, thus, absent sub-
strates could only be modelled by using an initial trace con-
centration. Adaptive DFBA allows initial zero concentrations

to specify absent substrates, and excess substrates are indi-
cated by negative concentrations.

Uptake limits During an Adaptive DFBA simulation, re-
action limits may be arbitrarily changed, potentially lead-
ing to an inconsistent state. The initial uptake limits are
checked and saved to allow recovering the original state
when needed.

Final initialization All variables and data structures
needed for the simulation are initialized, and a progress
bar (text or graphic depending on verbosity level) is
prepared.

Main loop
At each step required system modifications are applied
before calculation. Modifications are divided in two
classes:

Changes to model status Any reaction limit can be
modified at any time point using one of two forms:

1. A data frame containing as many rows as time
points and where each column will correspond to a
reaction limit; each limit is identified by its name
followed by ‘[upp]’ (upper limit) or ‘[low]’ (lower
limit). Only reactions whose limits are to be
changed need to be listed. Values must be specified
at every time point.
Since under experimental conditions exchange rates
are typically measured only at specific time points,
we considered the possibility of specifying only
these values and providing various interpolation
mechanisms. However, since implementing any
imputation scheme is easy in R, we considered best
to leave interpolation to the user.

2. A function that takes as arguments the model, the
current concentrations, the last previously
computed fluxes and the time step, and which
returns a new model. The function may use these
values to implement an imputation/interpolation
scheme as in the matrix approach, as well as
interactive changes in response to the environment

Changes in metabolite concentration We assume that
this will be used typically to model external interven-
tions on the system, such as predictable changes (like
progressive increment or exhaustion of a metabolite by
external actions or addition/removal of metabolites at
key time points) and feed-back controlled actions in re-
sponse to metabolite changes (such as a sensor/actor
system in a controlled fermentation that injects or de-
pletes nutrients when concentrations cross a given
threshold). Again, there are two possibilities:
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1. A data frame of predefined changes: a table of
changes to apply at each time point to the substrate
concentration. Since it works as a differential
engine, a zero means no change to current
concentrations, a positive value an addition and a
negative value a removal of metabolites.

2. A function that will take as input the current
concentrations and return the new concentrations
to be used. Using a function provides the additional
control needed to implement feed-back intervention
in response to dynamic system changes.

Time-step derived constraints At any time point, the
concentration of each metabolite is checked against the
substrate uptake rate to avoid overusing non-existing re-
sources. In the original DFBA algorithm, the direction of
each reaction was predefined by the initial limits. This is
sensible when nutrients are added only at the onset and
biomass can only grow, but is unsatisfactory when any
concentration or exchange limit can change at any time
during the simulation or a metabolite is excreted and
later consumed (and vice versa). In Adaptive DFBA, the
lower rate of an exchange reaction is modified to avoid
over-consumption only if the reaction is explicitly an up-
take reaction at the current time step.

Solution of the system of equations The classic DFBA
algorithm uses FBA to solve the metabolic problem at
each step. The result of FBA is not uniquely defined [5,
7, 8]. We have checked alternative FBA implementa-
tions: in these cases, although the solutions produced
may diverge at specific time points, they tend to return
to common solutions in later steps, leading to practically
equivalent dynamic trajectories (data not shown).
Solution of the FBA system of equations relies on an

auxiliary ODE solver library. We checked GLPK, CLP,
LP-SOLVE and CPLEX on different computer architec-
tures. All of them should produce the same or approxi-
mately similar (within rounding error bounds) results.
However, in our experience, we found that LP-SOLVE
gave different results in several of the calculated simula-
tions, GLPK failed to run in only one specific combin-
ation of simulation parameters, operating system and
architecture (whose origin we could not track), CLP
worked correctly in all cases but was significantly slower
than GLPK, and CPLEX was tested only in the free, aca-
demic version, which accepts a limited number of equa-
tions: for systems within this limit, it was the fastest
method, but we could not check it with larger systems.
Uncertainty in FBA may be reduced using optimal

fluxes calculated through Minimization of the Total Flux
(MTF), leading to a hopefully more parsimonious solu-
tion. We have implemented MTF as an optional alterna-
tive to FBA, and found that it leads to a system

evolution that is practically equivalent to that obtained
by FBA. Since MTF computation time is larger, FBA has
been kept as the default option, and MTF is offered on
demand.
Both, FBA and MTF compute a single value for each

metabolic flux at each step. It would be more useful to
obtain an estimate of flux variability limits. We have
tested as well implementing Flux Variability Analysis
(FVA) calculations at each time step to obtain stepwise
flux limits for each reaction. FVA results in a huge in-
crease in computational time that would only be justified
under special situations. We are currently exploring the
best approaches to definitively integrate FVA within the
algorithm.

System update After the system has been solved, bio-
mass content is calculated using the actual Biomass re-
action instead of the objective function. This allows
study of the evolution of a system using an objective
other than (and possibly conflicting with) Biomass. The
Biomass calculated is combined with the computed
fluxes to calculate new concentrations for the next step
as in the traditional scheme.

Output and post-processing
We have ensured that the return of Adaptive DFBA re-
mains fully compatible (and thus can substitute it seam-
lessly) with DFBA, easing its integration in existing
simulation schemes. Additional information can be ob-
tained using increasing verbosity levels.

Statistical analysis
Correlation/regression tests
During simulations, both fluxes and metabolite concen-
trations computed at each step were collected for further
statistical analysis, their distributions were checked for
normality using the Anderson-Darling and Shapiro-Wilk
tests, prior to selection of subsequent analyses. Correl-
ation and regression analyses were used to study the re-
lationship between all possible pairs of same-type
variable distributions: we considered the Pearson
product-moment, Spearman Rank and curvilinear re-
gression tests, which were applied to all possible pairs of
variables. Curvilinear regression was used to fit quadratic
and cubic polynomial equations.

Feature extraction and variable importance
To identify which variables may have a stronger influence
on desired outcome variables, we built models where each
desired outcome was initially modelled from all existing
variables, and used three feature extraction methods to se-
lect the most significant contributors: forward selection,
backward selection and Boruta’s algorithm (a machine-
learning/artificial intelligence algorithm based on Random
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Forest Classification) were applied to determine the relative
variable importance in explaining each outcome sought. For
the application of Boruta’s algorithm, variables were divided
in groups of 20, repeatedly applying selection and regrouping
until there remained 20 or less significant variables which
were subject to a last selection iteration. At each step, critical
judgement based on metabolic understanding was used to
supervise automatic selection.

Comparison of time-dependent metabolic distributions
Similarities and differences in time-dependent distributions
were studied comparing either whole or partial timelines.
Group comparisons were carried out using ANOVA and
Kruskal-Wallis, followed by Welch modification of Student’s
t-test or the Mann-Whitney/Wilcoxon test. Metabolites
whose evolution was clearly different were selected to build
time-dependent predictive models that might be used to dif-
ferentially steer simulations, fitting their time-dependent evo-
lution to either linear, quadratic or cubic models. The
parameters for the resulting models were then compared
with the experimental data using two non-nested model
comparison methods, the Cox test and the David-
Mackinnon J test.

Results
We have exploited Adaptive DFBA to model heterol-
ogous protein overproduction and secretion in Strepto-
myces lividans, in the presence of conflicting and
uncorrelated objectives.
For simplicity, in all subsequent simulations, we have

used the following scheme: system interventions have
been reduced to the minimum, time step was set at 1 h,
constraints were defined only at a few key times (typic-
ally every 12 h or more, punctually using a 4–6 h time
point to soften growth phase transition), and values at
intermediate points were imputed using linear
interpolation, corresponding to multi-phase linear re-
gression [27, 31]. Despite these settings, the resulting
simulations were remarkably well-behaved.

Descriptive modelling
The systems modelled correspond to Streptomyces livi-
dans TK24 strains growing on a complex medium
(NMMP, supplemented with glucose and casamino
acids). The experimental data has been originally pub-
lished elsewhere as figures [27].

Wild-type Streptomyces lividans TK24
DFBA and Adpative DFBA models are illustrated in
Additional file 1: Figure S1. The DFBA model predicts
the cross-over of NH4

+ with glucose, glucose exhaustion
and some amino acid uptake rates evolve similarly to the
experimental observations, however, other rates such as

growth arrest and L-alanine excretion and later uptake
are not reproduced.
To properly model growth and L-alanine exchange,

they had to be steered during the simulation using
Adaptive DFBA, which permitted forcing early excretion
of L-alanine and releasing this constraint later in the
simulation.

S. lividans TK24 strain harbouring the multi-copy plasmid
pIJ486
In the simulation of S. lividans TK24 harbouring the
multi-copy plasmid pIJ486 (model S.lividans-TK24-
pIJ486), the plasmid imposes a strain that can be de-
tected as a growth delay (Additional file 1: Figure S2).
With DFBA, besides the previous limitations, and since
growth and C source exchange rates can only be set ini-
tially to fixed rates, the system consumes and exhausts
glucose too fast.
Adapting glucose uptake to its concentration in the

medium using Adaptive DFBA allowed simulation of
gene-regulated adaptation to nutrient depletion, making
it available for a longer time. Additionally, at low levels
of glucose uptake, an alternate C source is needed, re-
quiring L-alanine to be switched from excretion to up-
take: only controlling both switches could growth be
maintained. Use of L-alanine resulted in a corresponding
reduction in NH4

+ needs, which automatically started
being excreted. The observed shoulder in growth rate
matched a less-defined region (identified by a larger dis-
persion) in published growth curves [27, 28].

S. lividans TK24 pIJ486 overproducing sec-secreted mTNF-α
Simulation results for S. lividans TK24 pIJ486 overpro-
ducing Sec-secreted mTNF-α (model S.lividans-TK24-
mTNFα) are presented in Fig. 1 and Additional file 1:
Figure S3. Protein secretion of mTNF-α is associated to
growth rate except in late phases [27]. This should make
it susceptible to modelling using traditional DFBA. How-
ever, like in previous simulations, DFBA produces incor-
rect results (Additional file 1: Figure S3A).
To match experimental rates (Fig. 1) we had to con-

sider the modifications learnt from previous simulations
with Adaptive DFBA. Still, the initial simulations re-
vealed a nutrient imbalance if the original protein secre-
tion rate was maintained through later stages (as in
traditional DFBA). This nutrient imbalance could not be
satisfied with the remaining nutrients, and the simula-
tion ended prematurely. Thus, proper simulation also re-
quired a progressive time-dependent adjustment of
mTNF-α secretion at late times (Fig. 1).

Exploratory use of adaptive DFBA
We now proceed to show the use of Adaptive DFBA to ex-
plore the metabolism of systems with limited knowledge:
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first, we analyse S. lividans TK21 grown in a complex
medium (NMMP complemented with mannitol and casa-
mino acids), over-expressing secretory proteins cloned in the
multi-copy plasmid pIJ486 and secreting them through the
minor Tat or the major Sec secretion routes, using model
proteins that have been shown to display secretion patterns
clearly dissociated from growth [28, 29]. Previous studies
have shown that the strains of S. lividans TK21 behave simi-
lar to those of S. lividans TK24, when grown on similar
media [28, 29], and that the metabolic model should be (to
the extent known) transferable between them [6].

Tat-dependent agarase overproduction in S. lividans TK21
Strain S.lividans TK21(pAGAs5) was generated trans-
forming S. lividans TK21 with the multicopy plasmid
pIJ486 carrying the gen dagA encoding agarase from S.
coelicolor and its regulatory region (model S.lividans-
TK21-DagA). Tat-dependent secretion typically starts by
the end of exponential growth, when the cells enter the
stationary phase, increasing when nutrients become
scarce in the medium. In the case of agarase, there is
also some reduced early secretion detectable during the
second exponential growth phase [3, 6, 28, 29]. Hence,
secretion cannot be coupled to growth nor can it be held
constant throughout the simulation. Additionally, agar-
ase secretion has been detected after 60 h of cultivation,
secretion takes place at higher yields, and only limited
experimental data is available. Hence, the application of

exploratory methods is of interest as an expeditive route
to inquire in the underlying metabolic processes.
DFBA was unable to produce a proper simulation: be-

sides the previous issues, if the lower limit on protein se-
cretion was set to zero to accommodate early lack of
agarase secretion, it was never secreted ignoring any
upper limit, as agarase overproduction competes with
growth. On the other hand, setting the lower limit to a
higher value to force late secretion would also force early
production, with an unrealistic initial evolution of the
system, and leading to early termination of the simula-
tion due to exhaustion of the C source (Additional file 1:
Figure S4A).
Adaptive DFBA allowed us to progressively adapt agar-

ase secretion to match the levels detected in each growth
phase, as well as to exploit the experience learnt from
previous simulations about other relevant constraints,
such as adapting rates in mannitol and L-alanine ex-
changes (Fig. 2).
Preferential use of amino acids was associated to re-

duced needs for NH4
+, both at the onset, and in the last

phases of the simulation, when L-alanine becomes the
preferred C and N source, although now the effect was
smaller, reflecting reduced levels of L-alanine and a lar-
ger need for N for protein synthesis.
We have also used this model to explore simulation of

alternative scenarios, running simulations using a con-
servative estimate for Tat secretion cost and more

Fig. 1 Simulation of S. lividans TK24 pIJ486 overproducing Sec-secreted mTNF-α. Biomass is expressed as dry weight (DW) in g/L, time is
expressed in h, and metabolite concentration in mmol/L. For simplicity, only glucose, NH4

+ (dotted lines) and amino acids have been plotted,
and Biomass and L-alanine have been emphasized using special symbol marks, as described in the legend
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aggressive costs considering secretion driven by a proton
motive force (PMF) of 80,000 H+ or its proposed equiva-
lent of 10,000 ATP [6, 30]. Inspection of the evolution of
major nutrients suggests that these alternate costs have
a reduced impact, visible at very late stages (after 60 h)
of the simulation (data not shown).

Sec-secreted α-amylase overproduction by S. lividans TK21
Strain S. lividans TK21 (pAMI11) [29] was generated
using a pIJ486 plasmid derivative carrying the amlB gene
encoding α-amylase from S. lividans under the control
of its own promoter (model S.lividans-TK21-amlB).
Simulation requires considering a secretion pattern
clearly different from that of mTN-α: α-amylase is max-
imally secreted at the exponential phase, and progres-
sively less during the stationary phase until it becomes
undetectable, making DFBA constant rates inappropriate
(Additional file 1: Figure S5A).
Using Adaptive DFBA we could take advantage of les-

sons learnt from previous simulations and, additionally,
to completely uncouple secretion from growth simulat-
ing the known secretion pattern. In this case, since there
is practically no protein secretion requiring additional N
consumption, the inverse relationship between NH4

+

and L-alanine was more evident during the stationary
phase (Fig. 3).

Sec-secreted overproduction of cellulase-a by S. lividans
TK24 pIJ486
We have also simulated growth of S. lividans TK24 har-
boring the pIJ486 multicopy plasmid and expressing the
Rhodothermus marinus thermostable cellullase-A gene
celA, cloned behind the promoter and signal sequence of
Streptomyces venezuelae subtilisin inhibitor (vsi) (model
S.lividans-TK24-CelA) grown in a different, C-limited
minimal medium containing glucose and casamino acids
[31, 32]. We extended our S. lividans model to accom-
modate overproduction and secretion of cellulase-A, and
to use the new experimental conditions. As in previous
cases, traditional DFBA failed to reproduce experimental
observations (Additional file 1: Figure S6A), whereas ap-
plying the knowledge gathered from previous simula-
tions allowed us to steer the simulation using Adaptive
DFBA to reproduce observed rates (Fig. 4).
Comparison with the simulations of α-amylase and

mTNF-α showed that amino acids were exhausted faster.
Although barely appreciable, switches on amino acid
and NH4

+ consumption were also coupled to small
changes in the slope of the growth curve. These effects
can only be ascribed to the composition and size of the
protein secreted, and suggests that overproduction of
cellulase-A imposes a distinct stress on the cell, in agree-
ment with recently published data [32].

Fig. 2 Simulation of S. lividans TK21 pIJ486 overproducing Tat-secreted agarase. Biomass is expressed as dry weight (DW) in g/L, time is expressed
in h, and metabolite concentration in mmol/L. For simplicity, only glucose, NH4

+ (dotted lines) and amino acids have been plotted, and Biomass
and L-alanine have been emphasized using special symbol marks, as described in the legend
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Fig. 3 Simulation of S. lividans TK21 pIJ486 overproducing Sec-secreted α-amylase. Biomass is expressed as dry weight (DW) in g/L, time is
expressed in h, and metabolite concentration in mmol/L. For simplicity, only glucose, NH4

+ (dotted lines) and amino acids have been plotted,
and Biomass and L-alanine have been emphasized using special symbol marks, as described in the legend

Fig. 4 simulation of S. lividans TK24 pIJ486 overproducing Sec-secreted cellulase-A. Biomass is expressed as dry weight (DW) in g/L, time is
expressed in h, and metabolite concentration in mmol/L. For simplicity, only glucose, NH4

+ (dotted lines) and amino acids have been plotted,
and Biomass and L-alanine have been emphasized using special symbol marks, as described in the legend
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Statistical analysis
The exploratory models built for Tat-dependent agarase se-
cretion and Sec-dependent α-amylase secretion were sub-
jected to statistical analysis to determine dependencies and
identify the most relevant variables affecting protein produc-
tion. Although strong positive/negative correlations
(R > |0.9|) between uptake of some amino acids and protein
production could be identified, consumption of amino acids
is not enough to explain protein production as secretion
may be detected after amino acids have been consumed or
may be absent in their presence (e.g. Additional file 1: Figure
S7 and Additional file 1: Figure S8). Similarly, no other me-
tabolite showed a clear dependence relationship with protein
secretion when considered in isolation.
Feature selection was applied to models initially in-

cluding all metabolites to select the most important vari-
ables in the model (e.g. Additional file 1: Figure S9).
H2O2 was consistently among the variables most rele-
vantly associated with agarase and α-amylase secretion.
Interestingly, L-alanine, mannitol, other amino acids and
four metallic ions (Mo2+, Ni2+, Cu2+, and Co2+) are con-
sistently among the most significant variables for both
proteins.
Regarding comparison of time-dependent changes,

none of the variables was normally distributed (as may
reasonably be expected), so only Mann-Whitney U test
results were finally considered. Visualization with heat-
maps (e.g. Additional file 1: Figure S10) proved the most
practical way to explore the comparisons between simu-
lations and to identify likely relevant differences; these
were selected for further analysis consisting in the con-
struction of regression models that were subsequently
subject to model comparison analyses. Generally speak-
ing, the time-dependent regression models considered
resulted only in roughly approximate predictions (e.g.
Additional file 1: Figure S11), and the relative success of
each model heavily depended on the shape of the ori-
ginal distribution of the data.

Discussion
Adaptive DFBA algorithm
Predefined metabolic changes known prior to the simula-
tion can also be implemented using the DOA formalism,
but entangle iteratively running successive simulations be-
tween concentration change points, i.e. running a separate
DOA calculation for each continuous period without nu-
trient changes. Simulating interactive metabolite changes
triggered by unpredictable events with DOA would need
to run a full-length calculation, inspect it, detect the oc-
currence of the first key event, extract concentrations at
that time, apply the desired changes, restart the calcula-
tion from that point with the new concentrations and cal-
culate the system evolution to completion again, revising

the new results to detect any next key event and repeating
the cycle as many times as needed.
Our approach does not require calculations to be

restarted while permitting on-the-fly introduction of arbi-
trary changes to the model or to nutrient concentrations.
When changes are known in advance, specifying me-

tabolite changes in static tabular format provides a con-
venient solution, whereas using a function provides the
additional control needed to implement feed-back con-
trols in response to dynamic and unpredictable system
changes: by monitoring the levels of all metabolites at
each time point, it is possible to immediately detect
when trigger points are reached and react accordingly.
Example uses of this functionality include the response

of a sensor in a feed-back controlled, fed-batch experi-
ment, the effect of addition of a given substrate in flask
cultures at desired time points, or the effect of depletion
of nutrients caused by concomitant processes.
More complex schemes are possible modifying the

model status at any point. Using a tabular format per-
mits modification of reaction rates when their course is
known in advance and can be modelled mathematically,
e.g. multi-phase linear models [27], sigmoid fitting [22],
or any other. A function provides the additional versatil-
ity needed to implement arbitrarily complex changes in
metabolic behaviour, like implementing any desired ex-
pression for calculating uptake rates (e.g. Michaelis-
Menten [9, 11]), setting reaction bounds in response to
changes of directly or indirectly related fluxes or nutri-
ent concentrations (e.g. dependence of CO2 on pH [22]),
implementing concentration-dependent boundary condi-
tions (e.g. phosphate-dependent secretory and metabolic
changes [11, 33]), activating specific genes in response to
environmental and internal conditions [10, 29], imple-
menting time-dependent behavioural changes (e.g. CO2/
O2 uptake/excretion switches in response to day-night
light cycles [22]), or detecting differential trends to act
accordingly.
These modifications permit unprecedented arbitrary

complexity in steering simulations to model dynamic
regulatory, genomic or even epigenomic changes with
Adaptive DFBA.
Users may choose FBA or MTF to solve the metabolic

problem at each step. We have tested several combina-
tions of ODE solvers and architectures. To summarize,
GLPK provides the best cost-benefit trade-off, and if it
fails to run on a specific calculation (which should be
exceptional), then CLP (which is slower) or CPLEX pro-
vide suitable alternatives.

Overproduction of secretory proteins in S. lividans
It has been shown that poor cell growth can be associ-
ated with increased secretion of endogenous and heter-
ologous products [3, 34], and that secretion cannot easily
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be coupled to other objectives [3, 18, 33–35]. Protein secre-
tion poses a well-known additional problem since conflicting
objectives lead to a controversial DFBA solution: if priority is
given to growth, the cell will limit secretion to save resources,
whereas if priority is given to secretion, it will proceed at the
expense of growth. Various approaches to deal with these
conflicts have been proposed with varying success such as
assuming that secretion is tied to cell growth [12], to glucose
uptake [18] or using alternate objectives, such as ATP pro-
duction [17].
We have shown several examples of DFBA limitations

when applied to secretory protein overproduction and
how to overcome those using Adaptive DFBA, reporting
the simplest models that still gave good results in each
case. More complex parameter-tuning and pre-processing
(e.g. growth estimation using sigmoid functions or rate ap-
proximations using non-linear functions) can be easily im-
plemented in R. Using Adaptive DFBA we could enforce
specific rates such as growth, L-alanine, C-source or pro-
tein secretion and explore which limits are compatible
with observed experimental behaviour.
Even with minimal intervention in the system constraints

and a coarse time step, different cellular responses and their
metabolic associations could be identified using Adaptive
DFBA: harbouring the pIJ486 multicopy plasmid or overex-
pressing secretory proteins resulted in changes to the dy-
namic consumption of various nutrients in a delicate
balance. As in previous metabolomics studies [36], both the
plasmid-bearing and mTNF-α producing strains diverge
from the plasmid-free strain, with the mTNF-α overprodu-
cing strain becoming more divergent with time.
S. lividans showed an initial preference for using amino

acids as the main C and N sources, resulting in an initial
increase in NH4

+ levels and sustained saccharide con-
centration, coincident with previous observation in batch
and fed-batch cultures [27, 28]. As amino acids levels
decreased, glucose/mannitol and NH4

+ became preferen-
tial sources of C and N, and L-alanine was excreted to
the medium in large quantities [36]. This switch was as-
sociated with a temporary alteration of growth rate when
the change was too abrupt. Once the switch completed,
growth resumed its former speed until glucose/mannitol
reduction forced a new switch to L-alanine consump-
tion. This reduced the need for glucose/mannitol and
NH4

+ and was associated to the switch to the stationary
phase (often near the crossover point between glucose/
mannitol and L-alanine levels). These data also yield
useful information to interpret previous observations of
Tat- or Sec-dependent secretory protein overproduction
using glucose or mannitol using S. lividans TK21 [3, 28,
29]. Interestingly, DFBA calculations without enforce-
ment of proper L-alanine exchange rates were also vi-
able, although they proved unable to survive for as long
as simulations where it was controlled. This suggests

that L-alanine excretion may not be required in early
growth, which, may better fit an immediate optimal FBA
solution, and that its excretion might be a suboptimal
metabolic mechanism leading to constitution of an external
reservoir that can sustain viability after the main nutrients
are depleted, and explaining the need for forced controls
using Adaptive DFBA.
The size and composition of the overproduced secretory

protein affects metabolic patterns: interestingly, heterologous
proteins like mouse mTNF-α and Rhodothermus cellulase-A
have a larger, size dependent, metabolic footprint and lead to
faster amino acid uptake than overexpression of α-amylase
from S. lividans or agarase from the closely related S. coelico-
lor, suggesting mutual adaptation of metabolism and protein
composition in S. lividans.

Analysis of time-dependent relationships
The availability of a versatile method to model complex
systems paves the way for exploring time-dependent in-
teractions. FBA-based studies consider a single point in
time, associations are heavily dependent on the magni-
tude of fluxes and their differences and necessarily ig-
nore time-dependent changes.
Having access to dynamic simulation data opens the

possibility of exploring time-related associations, such as
identifying fluxes or metabolites that display a highly
correlated, anti-correlated or independent time behav-
iour, clustering reactions by flux patterns, grouping and
ranking them functionally and investigating associations
to specific targets.
Our results suggest that using only roughly approximate

limits for key reactions may be enough to obtain accept-
able predictive models. While these limits may be pro-
vided by educated guesses, proper modelling should rely
on statistically sound multivariate models, as no single
metabolite could be completely associated to growth or
protein secretion. Selecting an appropriate metabolite
combination becomes then the most important issue. All
three methods gave relatively consistent results, however,
in our hands, Boruta’s Random Tree based approach
seems better suited than traditional feature extraction
methods to identify biologically meaningful variables.
Application of feature extraction methods identified

relevant associations with H2O2 (likely as an indicator of
oxidative stress, which is associated to the onset of the
stationary phase, to the decline in α-amylase secretion
and to the surge in agarase production), L-alanine, man-
nitol, other amino acids and, surprisingly, four metallic
ions (Mo2+, Ni2+, Cu2+, Co2+) whose association with se-
cretion had never been noticed before. Coincidentally, a
recent study [34] reported that S. lividans grown in min-
imal medium (MM) had a low yield in mRFP protein se-
cretion, whereas growth in CM/glucose had a high yield,
on the opposite side of the spectrum, only paralleled by
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NB medium (a rich medium with peptic digest of animal
tissue and beef extract). The only qualitative differences
between MM and CM/glucose are the presence in CM/
glucose of CuSO4 and CoCl2. Furthermore, that a care-
fully controlled, minimal medium like CM/glucose, con-
taining only glucose and various ions, can match in
efficiency a very rich, complex medium like NB, further
supports their key role. While the relevance of these ions
has passed unnoticed to date, these experimental find-
ings strongly validate the use of deductions based on
methods of feature extraction from simulated
calculations.
We used heatmaps to identify metabolites whose time-

dependent evolution differed significantly and which
could be selected as targets for elaborating roughly pre-
dictive time-dependent models for use in the specifica-
tion of approximate exchange limits. Although these
methods may be used to obtain approximate predictions,
further work is clearly needed to construct better pre-
dictive models. A potentially promising approach should
likely consider the dependence of each metabolite on all
other relevant ones to build multivariate models.
Adaptive DFBA expands the field of metabolic systems

whose time-dependent evolution can now be analysed,
extending DFBA applicability to deal with uncorrelated
objectives, dynamically adapting and unforeseeable sys-
tems, and improving predictive power in situations with
reduced experimental data.
Our analyses may certainly be improved. Possible en-

hancements to Adaptive DFBA include additional fine-
tuning, further exploring the effect of other key metabo-
lites identified thanks to these simulations, modelling
the role of relevant post-secretory mechanisms such as
the effect of protein folding and modification, the role of
external proteases in degrading misfolded proteins [37]
to account for losses in activity, or implementing reac-
tions for “endogenous metabolism” (digestion of dead
cells to reduce biomass and produce constituent mono-
mers for survival) in late growth phases [11]. At the
simulation level, while our calculations using relatively
large models can be completed in acceptable times, fur-
ther optimizations might include enabling dynamic
modification of the time step size [38] and addition of
further extensions to the algorithm such as Robustness
Analysis, Phenotypic Phase Plane Analysis, or
Minimization of Metabolic Adjustment Analysis, which
might improve its utility in biotechnology engineering
[18]. As mentioned, there is still room open for improve-
ment of predictive models; whether these are really
worth implementing will depend on future research.

Conclusions
We have shown the advantages of the Adaptive DFBA
approach with its descriptive application to reproduce

and explore experimental data, and its exploratory utility
for modelling S. lividans secretion via the major Sec or
the minor Tat secretion routes.
Our work not only opens the way for advanced and

versatile simulation of arbitrarily complex metabolic sys-
tems, but also allows exploration of time-dependent re-
lationships that were not easily accessible until now due
to the difficulty in modelling arbitrary systems with
DFBA.
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