
RESEARCH ARTICLE Open Access

Evaluating the profound effect of gut
microbiome on host appetite in pigs
Hui Yang1,2†, Ming Yang3†, Shaoming Fang1, Xiaochang Huang1, Maozhang He1, Shanlin Ke1, Jun Gao1,
Jinyuan Wu1, Yunyan Zhou1, Hao Fu1, Congying Chen1* and Lusheng Huang1

Abstract

Background: There are growing evidences showing that gut microbiota should play an important role in host
appetite and feeding behavior. However, what kind of microbe(s) and how they affect porcine appetite remain
unknown.

Results: In this study, 280 commercial Duroc pigs were raised in a testing station with the circadian feeding
behavior records for a continuous period of 30–100 kg. We first analyzed the influences of host gender and
genetics in porcine average daily feed intake (ADFI), but no significant effect was observed. We found that
the Prevotella-predominant enterotype had a higher ADFI than the Treponema enterotype-like group.
Furthermore, 12 out of the 18 OTUs positively associated with the ADFI were annotated to Prevotella, and
Prevotella was the hub bacteria in the co-abundance network. These results suggested that Prevotella might
be a keystone bacterial taxon for increasing host feed intake. However, some bacteria producing short-chain
fatty acids (SCFAs) and lactic acid (e.g. Ruminococcaceae and Lactobacillus) showed negative associations with
the ADFI. Predicted function capacity analysis showed that the genes for amino acid biosynthesis had
significantly different enrichment between pigs with high and low ADFI.

Conclusions: The present study provided important information on the profound effect of gut microbiota on
porcine appetite and feeding behavior. This will profit us to regulate porcine appetite through modulating
the gut microbiome in the pig industry.
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Background
Feelings of hunger and satiety are the principal invol-
untary motivations for animal feeding behavior [1].
The feeding behavior mainly includes two phases: the
appetitive phase (e.g. foraging) and the consummatory
phase (e.g. chewing and swallowing) [2]. The appeti-
tive phase brings animals to contact with food,
whereas the consummatory phase is the final reflexive
response. Both of these phases can increase the
hunger, the desire of appetite and food intake. There-
fore, it is important to elucidate when to seek food,
what to eat and how to eat. There are two models
for appetite control: one is involved in host energy

homeostasis and hedonics; the other model is based
on bacteria–host communications [1].
The homeostatic model reflects the balance of

energy intake and expenditure in the host. The model
explains that appetite is triggered by energy shortage.
The center for homeostatic control of energy balance
is located in the hypothalamus, which plays a key role
in integrating energy information through neural and
humoral pathways [3]. The neural pathway senses
peripheral energy status via vagal afferents, which
relay the nutritional information to the solitary tract
nucleus in the brainstem and subsequently transmits
to the hypothalamus. The humoral pathway directly
circulates nutrients and hormones (such as glucagon-
like peptide 1 (GLP-1), peptide YY (PYY), insulin and
leptin) to the hypothalamic arcuate nucleus (ARC).
Within the hypothalamus, pro-opiomelanocortin (POMC)
neurons regulate satiety, whereas neuropeptide tyrosine
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(NPY) and agouti-related peptide (AgRP) neurons are
involved in hunger signaling. The POMC, NPY and AgRP
neurons are often regarded as the ‘first order’ in the
pathways of hunger and satiety [4]. When animals
increase appetite and food intake, the feeding-related feel-
ing of pleasure might underlie the hedonic reason for eat-
ing. An abnormal hedonic driving for eating can override
homeostatic signals and cause eating disorders, such as
bulimia nervosa [5] and obesity [6].
Accumulating evidences indicate that the gut micro-

biota plays an important role in the bidirectional
communication between the brain and the gut [1, 7]. In
particular, the microbiome in the gastrointestinal tract
has an important influence in host energy metabolism.
For instance, dysbioses of the gut microbiota has
contributed to kwashiorkor [8], obesity [9] and anorexia
nervosa [10]. More and more studies have indirectly
demonstrated the role of the gut microbiota in host
eating behavior. Zhang et al. [11] found that the gut
microbiota could be shifted by changing the amount of
food intake. Breton et al. [12] showed that gut bacterial
proteins could activate host satiety pathways and have
an effect on host control of food intake dependent on
the bacterial growth cycles. The optimal regulation of
host appetite might be ensured by both bacteria derived
chemical signals and the energy status of the gut micro-
biota. The molecules produced by gut bacteria should be
detected by the chemical sensory elements of the gut
epithelium located on enteroendocrine cells, and then
activate the pathways of appetite control [13]. However,
these hypotheses about how the gut microbiota influ-
ences the host appetite remain uncovered. There are few
studies about which microbes and how the gut bacteria
regulate host feeding behavior. Furthermore, the causal-
ity between the change of the gut bacteria and host feed-
ing behavior remains to be established.
The aim of the present research is to explore the

potential impact of gut bacteria on porcine feeding
behavior using 16S rRNA gene sequencing, and to
identify the possible bacterial taxa influencing porcine
appetite. As pigs have been used as a biomedical model
for human diseases, the identification of bacterial mole-
cules involved in feeding behavior could also provide
useful reference for the prevention and treatment of
human eating disorders.

Results
Phenotypic characteristics of porcine feeding behavior
The phenotypic distributions of feeding behavior traits
including average daily feed intake (ADFI), average daily
eating time (ADET) and average daily eating visits
(ADEV) in the experimental cohort are shown in
Additional file 1: Figure S1. The phenotypic values basic-
ally fitted the normal distribution. As expected, the

ADFI had a significantly positive correlation with backfat
(r = 0.41), average daily gain (r = 0.58) and residual feed
intake (r = 0.60), and the ADET was positively correlated
with the ADEV. However, there was no significant
correlation between ADFI and ADET, and between ADFI
and ADEV (Fig. 1). We then analyzed the effects of gen-
der, host genetics and pen on the phenotypical values.
Host gender and genetics (full-sibs vs. unrelated individ-
uals) showed no significant influences in the phenotypical
values (P > 0.05, Additional file 2: Figure S2). However,
pen had a significant effect on phenotypes. Pigs in differ-
ent pens were detected to have significant differences of
ADFI values by pairwise comparison (Additional file 3:
Table S1). Besides, the pigs in the same pen exhibited
more similarity of appetite (Additional file 2: Figure S2).
Interestingly, our previous study also found that the diver-
sity of gut microbiota in the pigs housed in the same pen
was more similar than that in the pigs in different pens
[14]. We assumed that the more similarity of gut micro-
bial composition resulted in the similarity of appetite for
pigs in the same pen.

Enterotypes and its association with porcine feeding
behavior
We obtained 11,709,234 sequence reads in 280 fecal
samples. After clustering based on the 97% similarity, an
average of 759 OTUs for each sample was identified.

Fig. 1 The correlation among six traits related to porcine feeding
behavior. The numbers indicate spearman correlation coefficients
between each pair of traits. The size of circle represents the correlation
strength. The names of traits are shown as follows: average daily feed
intake (ADFI), average daily eating time (ADET), average daily eating
visits (ADEV), backfat (BF), average daily gain (ADG) and residual feed
intake (RFI)
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Consistent with the previous reports [15, 16], Bacteroi-
detes and Firmicutes were the most abundant phyla in
the fecal microbiota of pigs. But significant difference
existed in the relative abundances of bacterial taxa
among 280 samples, suggesting the animal-to-animal
variation of the phylogenetic composition. We classified
the enterotypes for all tested samples according to their
phylogenetic composition via the method described by
Arumugam et al. [17]. PCA analysis was used to observe
the enterotype patterns of stool samples. Two entero-
types were identified, which were dominated by Trepo-
nema (enterotype 1) and Prevotella (enterotype 2),
respectively (Fig. 2a). The violin plots illustrated the rela-
tive abundances of dominant bacteria between the two
enterotypes (Fig. 2b). In addition, the relationship of the
enterotypes with porcine feeding behavior traits is
shown in Fig. 2c. The Prevotella-predominant enterotype
(cluster 2) had a significantly higher ADFI value than
the Treponema-enterotype (P = 0.01). However, the
enterotype-like clusters were not significantly associated
with the ADET or ADEV (P > 0.05, Fig. 2c).

Association of fecal bacteria with porcine feeding
behavior
A total of 34 OTUs were significantly associated with the
ADFI in the two-part model analysis (FDR < 0.05, Fig. 3a).
Eighteen out of the 34 OTUs had strongly positive
correlations with the ADFI, while the other 16 OTUs

showed significantly negative associations (Fig. 3a and
Additional file 4: Table S2). Of the 18 positive associations,
12 OTUs were annotated to Prevotella, and the other six
OTUs were separately assigned to Lachnospiraceae,
Faecalibacterium prausnitzii, Ruminococcaceae, S24–7,
Anaeroplasma and Sutterella. Among the 16 negative
correlations, eight OTUs were annotated to the family
level, including two OTUs annotated to Ruminococcaceae,
two OTUs to RFP12, and one OTU to each of Christense-
nellaceae, Dethiosulfovibrionaceae, Elusimicrobiaceae and
Veillonellaceae. Five OTUs were assigned to the genus
level, including two OTUs to CF231, and the other three
OTUs to Sphaerochaeta, YRC22 and Lactobacillus. Only
OTU386 was annotated to the species Butyricicoccus
pullicaecorum. However, at the threshold of FDR < 0.05,
we didn’t detect any OTUs significantly associated with
the ADET or ADEV.
We also employed randomForest for regression

analysis to further evaluate the association between fecal
bacteria and the ADFI. A total of 15 OTUs were identi-
fied to significantly associate the ADFI. These OTUs
were annotated to the bacterial taxa similar to those
identified by two-part model, suggesting the repeatability
of the association results (Fig. 3b). Additionally, we also
identified two OTUs for each of the ADET and ADEV
by randomForest analysis (Additional file 5: Figure S3).
To determine the hub OTUs related to the ADFI, the

34 OTUs detected by the two-part model were used to

Fig. 2 Enterotype-like cluster distribution in 280 experimental pigs. a Enterotype-like group assignation of experimental pigs. Enterotype 1 was
dominated by Treponema, and enterotype 2 was dominated by Prevotella. b Relative abundance of Treponema and Prevotella in each enterotype.
c Association of enterotype-like clusters with the ADFI, ADET and ADEV
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estimate sparse correlations using the SparCC method
[18]. Only OTU170 (Prevotella copri) had the connectiv-
ity with all other nodes (Fig. 3c). We also observed that
those OTUs positively associated with the ADFI and
annotated to Prevotella were clustered into a sub-mod-
ule that was negatively correlated with the OTUs show-
ing negative effect on the ADFI. Combining the results
of the association study and the co-abundance network
analysis, we suggested that Prevotella, especially Prevo-
tella copri should play a core effect on porcine feed
intake.

Contribution of the gut bacteria to the pen effect on the
ADFI
To test the hypothesis that the pen effect on the ADFI
values might be associated with the stochastic differences

in the bacterial exchange and colonization between pigs in
the same pen and different pens, we focused on those OTUs
that belonged to the 34 ADFI-associated OTUs and showed
significant difference of the relative abundances between
pigs in different pens. As the result, the relative abundances
of five ADFI-associated OTUs (Otu351, Otu494, Otu202,
OTU367 and Otu294) were significantly influenced by pens
(Additional file 6: Table S3). We next treated the relative
abundance of the OTU351, OTU494 and OTU202 as the
fixed effect in the linear regression analysis, and re-evaluated
the effect of pens on the ADFI values. Interestingly, the
significant difference of the ADFI values in pigs in different
pens was indeed vanished (P= 0.07), suggesting that the
large variation of the phylogenetic composition of gut
microbiota in pigs housed in different pens caused the pen
effect on the ADFI.

Fig. 3 Porcine average daily feed intake (ADFI)-associated OTUs identified in this study and its interaction network. a The 34 ADFI-associated
OTUs identified by two-part model (FDR < 0.05) are shown as Z scores. Blue bars show the negative associations and orange bars indicate the
positive associations. b The top informative OTUs related to the ADFI detected by randomForest analysis. c Co-abundance network analysis of the
ADFI-associated OTUs reveals the significant interactions. The orange nodes correspond to the OTUs showing the positive association with the
ADFI, and the blue nodes represent the OTUs negatively associated with the ADFI. Edge color indicates positive (orange) and negative (blue)
correlations. The size of nodes represents the degree of connectivity

Yang et al. BMC Microbiology          (2018) 18:215 Page 4 of 10



Predicted function capacities of gut microbiome related
to porcine ADFI
We predicted functional capacity profiling using 16S
rRNA marker gene sequences to identify potential
function categories of gut microbiome related to por-
cine ADFI by PICRUST software [19]. At the signifi-
cance threshold of FDR < 0.05, we identified 204
KEGG Orthologies (KOs) showing significant associa-
tions with the ADFI (Additional file 7: Table S4).
These ADFI-associated KOs were enriched in the path-
ways related to amino acid biosynthesis and metabolism
(cysteine and methionine metabolism, histidine metabol-
ism, phenylalanine, tyrosine and tryptophan biosynthesis,
and alanine, aspartate and glutamate metabolism), and
sugar metabolism (such as amino sugar and nucleotide
sugar metabolism, starch and sucrose metabolism, and
fructose and mannose metabolism) (Additional file 8:
Figure S4). Interestingly, the KOs negatively associated
with the ADFI were enriched in the pathways of the
biosynthesis of branched chain amino acids (valine, leu-
cine and isoleucine), histidine, tryptophan, arginine and
proline, while the KOs positively associated with the ADFI
were enriched in the biosynthesis of serine, cysteine and
methionine (Fig. 4a). We further evaluated the contribu-
tion of the ADFI-associated bacterial taxa to the changes
of the ADFI-associated pathways related to amino acid
biosynthesis and metabolism. Those bacterial taxa increas-
ing porcine ADFI, especially Prevotella and Faecalibacter-
ium prausnitzii, were positively associated with the KOs
enriched in the biosynthesis of serine, cysteine and
methionine, but negatively correlated with those KOs
negatively associated with the ADFI (P < 0.001). On the
contrary, the bacterial taxa decreasing porcine ADFI
showed the inverse correlations with the ADFI-associated
KOs (Fig. 4b).

Discussion
The role of gut microbiota in the regulation of host
physiological functions in both health and disease state
is a hot topic in the research field of gut microbiome.
Researchers have summarized the possible role of gut
microbiota in host appetite control [1] and the mechan-
ism of the microbiota-gut-brain axis in regulating host
appetite and metabolism [7]. Furthermore, the correl-
ation between the diversity of the gastrointestinal
microbial community and cattle feed intake was also
investigated [20]. However, to our knowledge, there is
no study identifying gut microbes associated with por-
cine appetite until now. In the present study, we uncov-
ered the potential relationships between porcine feeding
behavior traits including average daily feed intake, aver-
age daily eating visits and average daily eating time, and
gut bacterial taxa by 16S rRNA gene sequencing analysis.

We also revealed potential function capacities of gut
microbiome related to porcine ADFI.
The ADFI was positively associated with backfat thick-

ness, average daily gain and residual feed intake, suggest-
ing that increasing feed intake not only promotes
growth, but also increases fat deposition, but possibly
decreases feed efficiency. A total of 34 OTUs were
identified to associate porcine ADFI, but we did not
identify any OTUs associated with the ADET or ADEV
in this study. Moreover, the phenotypic values of eating
visits and eating time were not correlated with feed
intake. The main explanation for this observation should
be the reason that it was difficult to accurately record
porcine eating time and visiting times, because some
pigs did not intake the feed when they visited the
automatic feeding trough or the pigs only felt funny for
out and in of the machine.
Some SCFA-producing bacteria showed negative

correlations with feed intake (Fig. 3a). For examples,
Christensenellaceae (OTU494) is Gram-negative bac-
teria, and can produce the SCFAs [21]. Goodrich et al.
[22] revealed that Christensenellaceae might be a marker
for low BMI in humans. This was concordance with the
finding in this study that the ADFI was positively associ-
ated with backfat thickness. Butyricicoccus pullicaecorum
(OTU386) is an anaerobic and butyrate-producing
bacterium [23]. Veillonellaceae (OTU294) that contains
the genus Mitsuokella, Megasphaera and Acidaminococ-
cus, could utilize dietary amino acids [24] and produce
high amounts of the SCFAs [25]. Higher abundance of
Ruminococcaceae (OTU197 and OTU501) was found in
the low-ADFI pigs. Some species of Ruminococcaceae
(e.g. Ruminococcus flavefaciens and Ruminococcus albus)
can produce lactate and propionate [26]. SCFAs have an
important effect on regulating host energy metabolism
and appetite. Locally in the gut, SCFAs can directly
facilitate the release of the anorexigenic hormones PYY
and GLP-1 from L-cells [27]. Chambers et al. [28]
showed that there was an increase in the hormones PYY
and GLP-1, and a decrease in energy intake when deliv-
ering propionate directly to the colon. In addition, Lacto-
bacillus (OTU62) was detected to negatively associate
the ADFI in this study. Lactobacillus has always been
used as probiotics and can produce lactic acid to
promote intestinal development and metabolism [29].
High level of lactate can activate the satiation pathway
and reduce food intake [30]. Pessione et al. [31] summa-
rized that biogenic amines from lysine, phenylalanine,
histidine and tyrosine are released by decarboxylation of
lactic acid bacteria. Correspondingly, in the predicted
function capacity analysis of gut microbiome based on
16S rRNA gene sequencing data, the genes involved in
the metabolism and biosynthesis of histidine, arginine,
proline, branched chain amino acids, and aromatic
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amino acids (tryptophan, phenylalanine and tyrosine)
were increased along with the declining feed intake. The
activity of histamine neurons could control energy balance
and behavioral responses. Interestingly, feeding a low pro-
tein diet added with lysine, methionine and tryptophan to
piglets reduced feed intake and body weight gain [32].
Batterham et al. [33] also reported that protein inhibits
food intake and appetite more than carbohydrate or fat in
obese individuals. The increased concentration of branched
amino acid in the plasma significantly increased the release
of some gut hormones (e.g. GLP-1 and insulin) [34]. Oral

administration of phenylalanine reduced food intake in
diet-induced obese mice [35]. Especially, tryptophan signifi-
cantly increased plasma concentrations of PYY and chole-
cystokinin that are both regarded as satiation signal [36].
Holzer [37] indicated that the synthesis of neuropeptides
might be affected by microbial control of the availability of
amino acids. These results suggested that some gut bacteria
might suppress porcine feed intake through producing
SCFAs and lactic acid, and regulating the metabolism of
amino acids. However, compared to the functional predic-
tion based on 16S rRNA sequencing data, a follow-up

Fig. 4 The amino acid biosynthesis pathway enriched by the ADFI-associated KEGG Orthologies (KO) and its correlation with the ADFI-associated
OTUs. a The amino acid biosynthesis pathway enriched by the ADFI-associated KOs. Red lines represent positive correlations with the ADFI, while
blue lines indicate negative correlations with the ADFI. b The correlation between the ADFI-associated OTUs and the ADFI-associated KOs related
to amino acid metabolism. * P < 0.05, ** P < 0.01 and *** P < 0.001. The definitions of KOs are listed in Additional file 7: Table S4
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metagenomic sequencing analysis in the future study would
help better to elucidate the function and mechanism of gut
microbiota suppressing feed intake.
In agreement with the previous report [38], Prevotella

was the hub in the interaction network of the ADFI-as-
sociated OTUs. In the enterotype analysis, we identified
that the Prevotella-enterotype had a greater ADFI than
the Treponema enterotype-like cluster. Myer et al. [20]
also showed that Prevotella had a higher abundance in
the high ADFI group than in the low ADFI individuals
in beef cattle. A previous report indicated that Prevotella
is in connection with an increased long-term carbohy-
drate intake [39]. Prevotella that is capable of metaboliz-
ing complex dietary polysaccharides may favor the
uptake of monosaccharides in the host gut [38]. The
ADFI-associated OTUs annotated to Prevotella were sig-
nificantly associated with the ADFI-associated KOs.
Queipo-Ortuno et al. [40] reported that the abundance
of Prevotella was positively correlated with serum
ghrelin which is the only appetizing hormone known at
present. Taken together, we speculated that Prevotella
(particularly Prevotella copri) might be a critical bacterial
taxon stimulating the feed intake.

Conclusion
The present study showed that some bacteria producing
SCFAs and lactic acid (e.g. Ruminococcaceae and Lacto-
bacillus) might play an important role in suppressing
porcine feed intake, while Prevotella could promote
porcine feed intake and might be the keystone bacteria
for host appetite control. These results suggested that
the gut microbial community might have an important
contribution to porcine feeding behavior. The modula-
tion of gut microbiota could be benefit for the control of
feed intake in pig industry.

Methods
Experimental animals and phenotypic measurement
A total of 280 Duroc pigs (111 females and 169 males)
were used in this study. All experimental pigs were
healthy and not received antibiotics, probiotics or prebi-
otics during the period of experiment. Feeding and man-
agement of all experimental pigs were described in detail
in our previous study [14]. Briefly, all experimental pigs
were weaned at the age of 28 days, and then raised in
the nursery house until its body weight achieved 30 kg.
After that, experimental pigs were transferred to the fat-
tening house where automatic feeding troughs (Osborne
Industries, USA) were installed. Male and female pigs
were separately housed in different pens. The same for-
mula feed and clean water were available ad libitum for
all experimental pigs. Phenotypic performances of
experimental pigs at the stage of fattening from 30 kg (at
the age of 70 ~ 90 days) to 100 kg body weight (at the

age of 170 ~ 190 days) were measured by the instrument
of automatic feeding trough (Osborne Industries, USA).
When their body weight achieved 100 kg, the experi-
mental pigs were slaughtered at a commercial slaughter-
house by bleeding after electrical stunning. To avoid the
effect of environmental adaptation of experimental pigs
with automatic feeding trough, we used the phenotypic
values obtained from day 100 to 160 (intermediate stage
of measurement) for further analysis. ADFI, ADET and
ADEV were used as the traits evaluating feeding behav-
ior and appetite. As the phylogenetic composition and
microbial ecosystem of gut microbiota remain relatively
stable after maturation [41], we collected the fecal
samples from all 280 experimental pigs at the age of 140
days (within the interval of 100–160 days). All fecal
samples were harvested from animal’s anus, and then
immediately dipped in liquid nitrogen. After transported
to the laboratory, the samples were transferred into
-80 °C freezer until use.

Evaluating the environmental and host effects on
phenotypic values of feeding behavior
The effects of pen and host kinship on phenotypic
values of feeding behavior were evaluated by comparing
the similarity of phenotypic values between the pigs in
the same pen or in the full-sib members, and the pigs in
different pens or in unrelated individual groups. T-test
was used to compare the phenotypic values between
male and female pigs.

16S rRNA gene sequencing and data processing
Microbial DNA was extracted from feces with QIAamp
Fast DNA Stool Mini Kit (Qiagen, Germany) according
to the manufacturer’s protocol. The V4 region of the 16S
rRNA gene was amplified using the barcode fusion
primers 515F (5’-GTGCCAGCMGCCGCGGTAA-3′)
and 806R (5’-GGACTACHVGGGTWTCTAAT-3′). The
PCR products were used to construct the libraries, and
then sequenced using the paired-end method on Illu-
mina MiSeq platform (Illumina, USA). Data processing
was performed by the standard protocols of bioinformat-
ics analysis for 16S rRNA gene sequencing. Firstly, the
primers, barcode sequences, and low quality reads were
removed from raw data [42]. High-quality paired-end
clean sequence reads were then assembled into tags
using FLASH (v.1.2.11). And then, USEARCH software
(v7.0.1090) was used to pick OTUs at 97% similarity
[43]. Taxonomic assignments for the aligned sequences
were made using the Ribosomal Database project (RDP)
classifer program (v2.2) [44]. Those OTUs that were
presented in less than 5% of the experimental pigs and
had relative abundance < 0.01% were removed from
further analysis.
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Enterotype analysis
According to the method described by Arumugam et al.
[17], we analyzed the enterotype of the experimental pig
cohort. In brief, the clustering of samples was performed
by using the Partitioning Around Medoids (PAM) clus-
tering algorithm and Jensen-Shannon divergence (JSD)
distance based on the relative abundances of bacteria at
the genus level. And then, the Calinski-harabasz (CH)
Index was used to evaluate the optional number of clus-
ters from 2 to 20 clusters. When the cluster number had
the highest CH index and was also validated by the
silhouette coefficient, it was set as the optimal number.
The possible effect of predicted enterotype-like clusters
on the host feeding behavior was tested by t-test.

Association study
Because of the non-normal distribution of the relative
abundances of most bacteria in the experimental pigs, a
two-part model was applied to analyze the association of
bacteria with the traits of feeding behavior as used in
previous study [45]. Briefly, the two-part model accounts
for both binary and quantitative features. The binary
analysis was to test for the effect of the presence/absence
of the microbes on porcine feeding behavior, and the
quantitative model analyzed for association between the
abundance of the detected microbes and the host feed-
ing behavior. To further evaluate the effect of both
binary and quantitative features, a meta-analysis was
performed using an unweighted Z method. The mini-
mum P-value of binary, quantitative and meta-analysis
was set as the final association P-value. The Z-score was
calculated based on the Z distribution. In addition,
1000 × permutation test was used to control the false
discovery rate (FDR). The FDR ≤ 0.05 was set as the
significant threshold. The residuals of ADFI, ADET and
ADEV values corrected the effect of sex were used for
association analysis. We also used the package of ran-
domForest for regression to further confirm the associ-
ation results [46]. The variable importance was
estimated using the index of increase in Mean Squared
Error (%incMSE). The %incMSE value above 3 was
considered as an important variable.

Network analysis for the ADFI-associated OTUs
To identify the hub OTUs from the ADFI-associated
OTUs detected by two-part model, OTU networks were
predicted using the SparCC approach as described by
Friedman et al. [18]. In brief, we first calculated the
SparCC correlation coefficient matrix for the ADFI-asso-
ciated OTUs with SpiecEasi package [47]. And then, the
network analysis was performed and visualized using
cytoscape at the absolute correlation coefficient thresh-
old of 0.3 [48].

Prediction of functional capacity of gut microbiome
To predict functional capacity of the gut microbiome,
PICRUST (v1.0.0) was applied to calculate the relative
abundances of KEGG pathways according to the 16S
rRNA gene sequences [19]. Correlations between ADFI
values and relative abundances of KOs were imple-
mented with MaAsLin. The association between the
ADFI-associated OTUs detected by two-part model and
the ADFI-related KOs was evaluated by spearman
correlation analysis with R software.

Additional files

Additional file 1: Figure S1. Distribution of phenotypic values of
porcine feeding behavior-related traits. The phenotypic values of feeding
behavior-related traits were basically in a normal distribution. The name
of each trait was shown on the top: Average daily feed intake (ADFI),
average daily eating time (ADET) and average daily eating visits (ADEV)
(TIF 1374 kb)

Additional file 2: Figure S2. Factors affecting porcine feeding
behavior traits. (A) Sex had no significant effect on porcine feeding
behavior traits. (B) Pen showed significant effect on porcine feeding
behavior traits. (C) Comparison of porcine feeding behavior traits
between full-siblings and unrelated individuals (ns: P value was not
achieved significance; *** P < 0.001 for student’s t-test). (TIF 1241 kb)

Additional file 3: Table S1. The significant differences of ADFI values
between pigs in different pens detected by pairwise comparison. (XLS 30 kb)

Additional file 4: Table S2. The OTUs significantly associated with the
ADFI by the two-part model (FDR < 0.05). (XLS 44 kb)

Additional file 5: Figure S3. The top informative OTUs for ADET (A)
and ADEV (B) detected by randomForest analysis. (TIF 529 kb)

Additional file 6: Table S3. Five OTUs out of the 34 ADFI-associated
OTUs whose relative abundances were significantly influenced by pens.
(XLS 33 kb)

Additional file 7: Table S4. The correlation between the relative
abundance of KOs and the ADFI by MaAsLin. (XLS 65 kb)

Additional file 8: Figure S4. The top 25 pathways enriched by the
ADFI-associated KEGG Orthologies (KOs). The data on the bars indicates
the KO numbers. (TIF 2160 kb)

Additional file 9: Table S5. The ARRIVE Guidelines Checklist. (DOC 59 kb)

Abbreviations
ADET: Average daily eating time; ADEV: Average daily eating visits;
ADFI: Average daily feed intake; ADG: Average daily gain; AgRP: Agouti-
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