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Diet, physical activity and screen time but
not body mass index are associated with
the gut microbiome of a diverse cohort of
college students living in university
housing: a cross-sectional study
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Abstract

Background: Modifiable lifestyle factors (e.g. dietary intake and physical activity) are important contributors to weight
gain during college. The purpose of this study was to evaluate whether associations exist between body mass index,
physical activity, screen time, dietary consumption (fat, protein, carbohydrates, and fiber), and gut microbial diversity
during the first year of college. Racially/ethnically diverse college students (n = 82; 61.0% non-white) at a large
Southwestern university completed self-reported physical activity and 24-h recall dietary assessments, height and
weight measurements, and provided one fecal sample for gut microbiome analysis. Fecal microbial community
composition was assessed with Illumina MiSeq next-generation sequencing of PCR amplified 16S rRNA genes.
Post-hoc analyses compared microbial diversity by groups of high and low physical activity and fiber intake using
QIIME and LEfSe bioinformatics software.

Results: No statistically significant differences were observed between body mass index and gut microbiome
abundance and diversity. Median daily consumption of dietary fiber was 11.2 (7.6, 14.9) g/d, while the median
self-reported moderate-to-vigorous physical activity (MVPA) was 55.7 (27.9, 79.3) min/d and screen time 195.0
(195.0, 315.0) min/d. Microbial analysis by LEfSe identified Paraprevotellaceae, Lachnospiraceae, and Lachnospira
as important phylotypes in college students reporting greater MVPA, while Enterobacteriaceae and Enterobacteriales
were more enriched among students reporting less MVPA (p < 0.05). Barnesiellaceae, Alphaproteobacteria, and
Ruminococcus were more abundant taxa among those consuming less than the median fiber intake (p < 0.05). Post-
hoc analyses comparing weighted UniFrac distance metrics based on combined categories of high and low MVPA and
fiber revealed that clustering distances between members of the high MVPA-low fiber group were significantly smaller
when compared to distances between members of all other MVPA-fiber groups (p < 0.0001).

Conclusions: Habitual fiber consumption and MVPA behaviors help explain the differential abundance of specific
microbial taxa and overall gut microbial diversity differences in first-year college students.
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Background
Obesity remains a persistent public health issue affecting
78.6 million adults in the United States [1]. The transi-
tion from high school to college known as emergent
adulthood is a vulnerable period of life which is fre-
quently characterized by weight gain [2–6], making it an
important period for prevention and intervention [5, 7].
This transition period is usually marked by leaving home
for the first time, a new environment, building new
friendships and social networks, and greater independ-
ence in overall decision making [2]. The incidence of
obesity during this transition period is reportedly high
and is thought to persist throughout adulthood [8, 9].
Obesity is influenced by various factors including the
environment [10], dietary intake [11], physical activity
[12], and the intestinal microbiome [13, 14]. Higher inci-
dence of obesity increases the risk of cardiometabolic
conditions including hypertension, dyslipidemia, type 2
diabetes mellitus, heart disease, and cancer [9, 15].
Recent research suggests possible links between modi-

fiable lifestyle factors, the gut microbiome, and health
outcomes including obesity [16, 17]. Findings for phys-
ical activity among college students are bleak, with most
studies suggesting a lack of physical activity among this
population [6, 18–20]. First-year students specifically,
have reported that the transition to college makes it
difficult to maintain health and physical activity due to
lack of intrinsic motivation, loss of routine, and fewer
opportunities for organized sports participation [21].
Decreases in physical activity have been associated with
changes in body composition, including increased fat
mass and decreased lean body mass [22]. This suggests
that changes in body composition may be a sensitive
indicator of lifestyle changes during the freshman year.
Dietary behaviors adopted by college students fre-

quently include meals at ‘all-you-can-eat’ facilities, even-
ing snacking, junk food consumption, and dieting; these
behaviors have all been associated with weight gain [23].
Changes in dietary behaviors ultimately result in greater
consumption of energy-dense, nutrient-poor foods such
as sugar-sweetened beverages, fried foods, and salty
snacks [6, 24]. Ultimately these foods displace nutrient-
rich fruits, vegetables and whole grains containing diet-
ary fiber which promote the development of a healthy
gut microbiome. College students habitually have inad-
equate (~ 18 g) dietary fiber consumption [25].
Studies show that dietary alterations can rapidly mod-

ify the gut microbiome [26]. Switching mice from a
low-fat, plant-based diet to a high-fat/high-sugar diet
negatively impacted the gut microbiome composition
[26, 27]. A comparison of children from Western Europe
and Burkina Faso (BF) revealed significant differences in
the gut microbiome composition with high dietary fiber
consumption among BF children resulting in greater

Bacteroidetes relative to Firmicutes [28]. While compo-
nents of plant-based diets have been reviewed and are
thought to increase gut microbiome diversity via their
dietary fiber composition [29], the influence of physical
activity on the gut microbiome is an emerging area of
research with very few human studies, as recently
reviewed [30].
Gut microbiota composition differences have been

observed between active and sedentary women with
health-associated microbes Akkermansia muciniphila,
Fecalibacterium prausnitzii, Bifidobacteria longum, and
Roseburia hominis being more abundant in women
meeting daily physical activity recommendations [31].
Faecalibacterium and Roseburia were also abundant in
type-1 diabetics and healthy controls matched for high
physical fitness with no differences by health status [32].
Specifically, aerobic exercise training for 6 weeks appears
to shift the gut microbial composition and function as
greater similarities were observed between obese and
lean individuals irrespective of dietary intake [33]. Con-
versely, a study among elite rugby athletes found that
both protein consumption and physical activity in-
creased microbial diversity when compared to obese and
normal weight controls [34]. One other study among
women with breast cancer suggested that fitness level
did not significantly associate with the relative abun-
dance of specific gut microbes [35].
The gut during childhood and adolescence exhibits

greater interpersonal variation and lower bacterial diver-
sity compared to adults [36, 37]. This reduced diversity
appears to create a more plastic and malleable gut
microbiome [36, 37] which may fuel growth and allow
greater and lasting microbial shifts in response to phys-
ical activity and diet. University students living on cam-
pus generally experience major changes in lifestyle
habits, including physical activity and diet [29, 38].
Given that behaviors established during the college years
may persist throughout adulthood and increase the risk
of obesity and cardiometabolic diseases, this population
provides a unique opportunity to expand our under-
standing of the role of physical activity and diet on the
gut microbiome. The objective of this cross-sectional,
observational study was to characterize the gut micro-
biome of a racially/ethnically diverse cohort of college
students living in the dorms and assess possible associa-
tions with body mass index, measures of physical activity
(moderate-to-vigorous physical activity), sedentary be-
havior (screen time), and dietary (fat, protein, carbohy-
drates, and fiber) intake.

Results
Participant characteristics
A total of 82 participants (57.3% female; 31.7% Hispanic)
provided a fecal sample, MVPA and screen time data
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(Table 1). A subsample (n = 68; 60.3% female; 57.3%
non-white) also provided 24-h dietary recall data. The
median (IQR) percentage of kilocalories consumed from
protein, fat and carbohydrate were 16.2 (14.2, 18.8) %,
35.8 (30.0, 40.8) %, and 47.9 (39.7, 54.4) %, respectively
(Table 1). Both protein and carbohydrate consumption
were within the acceptable macronutrient distribution
range (AMDR) of 10–35% and 45–65%, respectively;
while the median fat consumption fell slightly outside
the AMDR range of 20–35% [39]. The median (IQR)
self-reported daily intake of sugar consumed was 65.5
(47.6, 104.6) g/d. Median daily consumption of dietary
fiber for males (n = 27) and females (n = 41) was 8.7
(7.1, 14.2) g/d and 11.4 (8.6, 16.8) g/d, respectively,
for which both fell below the AMDR for males (38 g/d)
and females (25–26 g/d) [39]. Self-reported MVPA
(p = 0.133) and screen time (p = 0.441) did not differ
by BMI classification. Self-reported screen time and
MVPA were not significantly correlated (Spearman
rho = − 0.143, p = 0.199).

Gut microbiota and behaviors
Amplicon high-throughput sequencing resulted in an
average of 60,000 16S rRNA gene amplicon reads per
sample. Rarefaction curves based on observed species,
Chao1 and Faith’s PD (phylogenetic diversity) metrics
suggested that adequate sampling depth was at 17,768
sequences. The median Firmicutes:Bacteroidetes ratio
was 0.65 (0.39, 1.23). This ratio did not differ by BMI
group (p = 0.413) or median categories of dietary protein
(p = 0.763), fat (p = 0.469), carbohydrate (p = 0.683), and
fiber (p = 0.835) intake. Similarly, the F:B ratios between
MVPA (p = 0.583) and screen time (p = 0.323) categories
did not differ significantly.
Chao1, observed OTU, and PD whole tree alpha-

diversity did not differ significantly by categories (above
or below the median) of dietary fat, protein, carbohy-
drate, or fiber. While no obvious visual differences in
beta diversity (between-sample) were observed via PCoA
plots (Additional file 1), comparison of distributions of
distances showed significant within-group differences for
carbohydrate, fiber and protein using both unweighted
and weighted UniFrac data (weighted data are shown in
Fig. 1). For fat consumption, only the within-group
weighted UniFrac distances were significantly different
between high and low-fat. Despite these differences in
beta-dispersion, PERMANOVA results indicated that
between group differences in weighted and unweighted
distance metrics were not significantly influenced by
dietary factors.
Chao1, observed OTUs, and PD whole tree alpha-

diversity metrics did not differ significantly by categories
of MVPA or screen time, suggesting that physical activ-
ity and sedentary behaviors were not associated with
species richness or evenness in this cohort of college
students. No obvious visual differences in beta diversity
(between-sample) were observed via PCoA plots
(Additional file 1) when evaluating MVPA and screen
time quartiles. Upon comparison of UniFrac distance
metrics with Bonferroni corrections, significant differ-
ences in beta diversity were observed between MVPA
groups when evaluating the median unweighted but
not weighted within-group UniFrac distances (Fig. 2a).
As unweighted UniFrac distances help to explain the
presence of less abundant, rather than most abundant
taxa; this result suggests that less abundant taxa may
differ by self-reported physical activity levels. Both
unweighted and weighted UniFrac within-group
distances differed by self-reported total daily sedentary
time or time spent in front of a screen (Fig. 2b and c).
These data suggest that presence of both less and most
abundant taxa may be characteristic of students with less
(2.5–4 h) sedentary time compared to all other groups.
Despite within-group differences in distances, no sig-
nificant between-group differences in weighted and

Table 1 Sociodemographic and key variables of college
students living in residence halls (n = 82)

Variable

Age (years) mean ± SD 18.4 ± 0.6

Sex % (n)

Male 42.7 (35)

Female 57.3 (47)

Residence hall % (n)

A 37.8 (31)

B 62.2 (51)

Race/ethnicity % (n)

Hispanic 31.7 (26)

White 39.0 (32)

Other 29.3 (24)

Body Mass Index (kg/m2) mean ± SD 24.4 ± 5.5

< 18.5 kg/m2% (n) 6.1 (5)

18.5–24.9 kg/m2% (n) 57.3 (47)

25.0–29.9 kg/m2% (n) 22.0 (18)

≥ 30.0 kg/m2% (n) 14.6 (12)

Dietamedian (IQR)

Carbohydrates (g) 165.7 (125.1, 240.7)

Fiber (g) 11.2 (7.6, 14.9)

Protein (g) 61.8 (42.4, 85.4)

Fat (g) 63.3 (38.8, 84.8)

Moderate-to-vigorous physical activity (min/day)
median (IQR)

55.7 (27.9, 79.3)

Screen time (min/day) median (IQR) 195.0 (195.0, 315.0)
aSample size decreases to n = 68 for diet data due to missing 24-h dietary
recalls; IQR, interquartile range; SD, standard deviation
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unweighted distances were observed for MVPA and sed-
entary time, as analyzed by PERMANOVA.
To further explore the influence of MVPA and dietary

fiber consumption, in post-hoc analyses, we examined
the beta-dispersion (weighted and unweighted UniFrac
distances) within groups of participants characterized by
merged MVPA and fiber categories (Group 1: low
MVPA-low fiber, Group 2: low MVPA-high fiber, Group
3: high MVPA-low fiber, and Group 4: high MVPA-high
fiber). Unweighted UniFrac data suggested that the
high MVPA-low fiber group (Group 3) had signifi-
cantly shorter distances among group members when

compared to within-group distances of all other MVPA-
fiber combination groups (Fig. 3, p < 0.001). When dis-
tances were partitioned by group and compared via
PERMANOVA, no significant between-group differences
were observed.
Analyses of fecal microbiota in high and low (median

cut point) MVPA or dietary fiber groups using LEfSe
allowed for the identification of specific bacterial taxa
that were associated with self-reported MVPA and diet-
ary fiber consumption. The greatest differences at vari-
ous taxa levels between the two communities are
displayed for MVPA (Fig. 4a) and dietary fiber (Fig. 4b).

A B C D

Fig. 1 Distance metrics by (a) carbohydrate, (b) fiber, (c) fat, and (d) protein consumption groups. Groups were created by separating self-reported
values that fell above and below median daily intakes. Dietary intake was obtained from automated self-report 24-h dietary recalls.
Significant differences in distance metrics between members of one group compared to another are denoted as *p < 0.05, **p < 0.001

A B C

Fig. 2 Differences in distance metrics by self-reported (a) MVPA and (b and c) screen time. MVPA and screentime were self-reported using
validated survey questions. Significant differences in distance metrics between members of one group compared to another group are denoted
as *p < 0.05; **p < 0.0001. MVPA, moderate-to-vigorous physical activity
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Data for MVPA suggested significant enrichment of fam-
ily Paraprevotellaceae among those reporting greater
MVPA. Family Lachnospiraceae and its genus Lachnos-
pira were also identified as potential microbial markers
of this more active group of college students. Family
Enterobacteriaceae and genus member Enterobacteriales
were more enriched among college students reporting
MVPA below the median value of 55.7 min/d. The family
Barnesiellaceae, class Alphaproteobacteria, and genera
Ruminococcus and unassigned Bacteroidales were more
abundant taxa in the low fiber consumption group, while
Tenericutes and other unassigned microbes were more
abundant among those consuming greater than the
median dietary fiber intake.

Discussion
This study is unique given its focus on college students,
a population susceptible to major lifestyle changes that
occur during a period of continued social and physical
development. In this study, we observed within-group
differences in beta-dispersion among a diverse cohort of
first-year college students reporting different dietary and
physical activity behaviors but these behavioral categor-
ies did not explain between-group differences in
microbial community structure. Additionally, a merged
comparison of dietary fiber consumption and MVPA

revealed differences in microbial beta-dispersion such
that high MVPA combined with low fiber intake resulted
in smaller within-group distances when compared to
within-group distances for all other MVPA-fiber groups.
Lastly, we report that specific microbial taxa were differ-
entially abundant among college students reporting
different daily MVPA and fiber consumption habits.
This study revealed no difference in the F:B ratio by

BMI, dietary intake variables, MVPA or screen time
categories. Previous literature has highlighted contradict-
ory results with regard to this phyla-level assessment.
Firmicutes have frequently been shown to decrease with
weight loss and have been observed in higher propor-
tions among obese animals and humans when compared
to lean counterparts [40–42]. Nonetheless, others have
reported no difference in the F:B ratio in relation to BMI
or weight change [43–45] or a greater abundance of
Bacteroidetes among individuals with increased BMIs
[46]. Bacteroidetes have been positively associated with
dietary fat while Firmicutes have been associated with
dietary fiber [47]. Conversely, a study in children re-
ported greater Bacteroidetes among those consuming
low-fat, high-starch and fiber diets when compared to
children consuming more western-style diets [28]. Still
other studies report that diet did not alter the propor-
tions of Firmicutes and Bacteroidetes [48]. Although
such discrepancies also exist among the emerging litera-
ture regarding physical activity, exercise and the gut
microbiome, these differences in findings may be the
result of differing study designs, methodologies, sample
types, and lack of replication of data. Similar to our find-
ings, the F:B ratio did not differ among exercise-trained,
obesity-prone rats [49] or active adult women [31], when
compared to sedentary controls. To date, three studies
have suggested a decrease in Firmicutes among exercise-
trained rodents of varying metabolic status [50–53],
while two investigations suggested an increase in Firmi-
cutes among exercise-trained rodents [54–56].
Findings from the current study suggest that gut

microbial beta-dispersion but not between-group dis-
tances differed by categories of high and low macronu-
trient (carbohydrate, protein and fat) consumption.
Carbohydrates, in particular dietary fibers, have been
identified as an important fuel source for the gut micro-
biome as part of habitual diets and short- and long-term
dietary interventions [57]. The finding that decreased
dietary fiber consumption among college students
resulted in beta-dispersion differences may be supported
by data suggesting that dietary fiber increases microbial
diversity in the gut by altering the composition of
fiber-fermenting microbes [28, 58]; however, causality
cannot be inferred in this cross-sectional analysis. Previ-
ous assessments of lifestyle factors and gut microbiome
community structure also support our findings of

Fig. 3 Beta diversity (unweighted UniFrac data) by categories of
combined high and low MVPA and fiber. Median MVPA (55.7min/d)
and dietary fiber (11 g/d) consumption were used to create high and
low groupings. Significant differences in distance metrics between
members of one group compared to another group are denoted as
**p < 0.0001. MVPA, moderate-to-vigorous physical activity
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increased abundance of Barnesiellaceae, Alphaproteo-
bacteria, and Ruminococcus, and decreased Tenericutes
among low-fiber consuming students compared to
high-fiber consumers. Barnesiellaceae members have
been associated with Western diets limited in fiber [59].
Ruminococcus has been associated with the degradation
of resistant starches which remain abundant in proc-
essed refined grain products [59]; this may explain the
observed increase among low-fiber consumers. Teneri-
cutes had a greater relative abundance among Bangla-
deshi children consuming fiber-rich diets compared to
American children following Western diets higher in fat
and protein and low in fiber [60]. Findings related to
dietary fiber in the current study occurred despite the
fact that college students in the present study reported
consuming a median fiber intake slightly more than 11
g/d. While this falls well below recommended intakes
for males and females 38 g/d and 25–26 g/d, respectively
[39], this finding suggests that small amounts of dietary
fiber may be sufficient to model potentially positive
changes in the gut microbiome. Further work is needed
to assess specific types of fiber and their influence on

specific microbial taxa and evaluate cause and effect
relationships in both animals and humans.
Gut microbial taxa varied among students reporting

differing levels of daily physical activity with Paraprevo-
tellaceae, Lachnospiraceae, and Lachnospira being more
prevalent in college students reporting greater MVPA,
and Enterobacteriaceae and Enterobacteriales being
more enriched among college students reporting less
MVPA. To date, the majority of evidence for exercise
and the gut microbiome is from animal models. A pilot
study among elite cyclists also found that Prevotella
genera abundance was positively correlated with the
amount of time spent exercising [61]. Similar to our
findings, although in a mouse model with longitudinal
measures, Evans et al. reported an increase in Lachnos-
piraceae with voluntary wheel running and an increase
in Ruminococcaeae but this family may have been
equally influenced by the high-fat feeding protocol [50].
In a study of mice with ad-libitum food access, voluntary
wheel running resulted in increased fecal Lactobacillus,
Bifidobacterium and Blautia coccoides–Eubacterium
rectale and decreased Clostridium and Enterococcus

Fig. 4 Differential microbial abundance between high and low (a) MVPA and (b) dietary fiber intake groups. High and low MVPA and fiber groups
were greater than or less than median self-reported physical activity (55.7 min/d) and dietary fiber consumption (11.2 g/d), respectively. Identification of
differentially abundant microbial taxa was done by linear discriminant analysis effect size analyses (LEfSe). MVPA, moderate-to-vigorous physical activity
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when compared to sedentary controls [53]. Voluntary
wheel running among mice has also been shown to
revert the negative effects of polychlorinated biphenyl
exposure on the gut microbiome with significantly
different community structures compared to sedentary
mice [51]. Mode of exercise may also play a role in shap-
ing the gut microbiome, as high-intensity interval train-
ing 3 times per week for 6 weeks improved the diversity
of the colonic gut microbiota in high-fat fed mice [52].
While our study did not capture the types of physical
activity in which students were engaging, a recent
human study found that endurance exercise-induced
changes in the gut microbiota were dependent on body
mass suggesting that the metabolic health of individuals
should be accounted for in future studies [33]. The ma-
jority of participants in the current study were of normal
weight and metabolically healthy. We did not observe dif-
ferences in gut microbiome diversity by BMI in our study
(mean ± SD: 24.4 ± 5.5 kg/m2, range: 16.9–50.4 kg/m2).
While animal models have been helpful for establish-

ing relationships between the gut microbiome, physical
activity and exercise, these links have been more difficult
in humans. To date, there have been few human studies.
A recent study found that the gut microbiome of adult
women meeting the World Health Organization recom-
mendations for physical activity differed from that of
sedentary women with significantly greater abundance of
species associated with metabolic health [31]. Other
studies have primarily focused on elite athletes who have
a tendency toward extreme dietary and exercise behav-
iors which make it difficult to extrapolate results to the
general public [34, 61]. A study conducted on elite rugby
players suggested that the gut microbiome of athletes
differed significantly in comparison to healthy weight
and obese sedentary controls; however, these community
differences also appeared to be influenced by the unique
dietary practices of the athletes [34]. In our study, we
aimed to assess potential dietary and physical activity in-
teractions by comparing beta-diversity patterns between
merged groups of high and low MVPA and fiber. We
found that high MVPA combined with low fiber intake
resulted in significantly different beta-dispersion than
all other combinations of MVPA and fiber consump-
tion but that between-sample distances did not differ
by MVPA-fiber categories. This suggests that beta-
dispersion patterns might be a marker of specific
physical activity and dietary behaviors but inferring
causality is not possible given that other unmeasured
factors might also be impactful. Kang et al. have re-
ported differential clustering due to exercise on both
normal and high-fat diet-fed rats [54] while Welly et
al. did not find orthogonal differences in PCoA plots
between exercised and dietary-restricted obese rats
[49]. Previous work has reported both increases [62]

and decreases [51] in fecal Tenericutes phylum rela-
tive abundance among exercised animals, while our
study and work by Lin et al. found that this taxa may
differ by fiber-rich foods (legumes, grains) consump-
tion [60]. Work by Kang et al. also suggests that ex-
ercise influences Tenericutes as this taxa increased
despite consumption of standard or high-fat diets
[54]. Differential effects on individual gut microbiome
taxa require further exploration to better understand-
ing how physical activity and diet independently and
mutually influence health.
Limitations of the current study include the small

sample size which make it difficult to assess demo-
graphic differences in dietary and MVPA behaviors.
Further, conclusions regarding gut microbial data should
be made with caution as this study was cross-sectional
(cannot infer causality) and the collection of a single
fecal sample may not accurately capture gut microbiome
differences in a free-living population where environ-
mental exposures, diet, physical activity, and other
behaviors vary from day to day. Despite not being able
to characterize the specific types of physical activity in
which college students were engaging at the time of
assessment, a strength of this study was the use of vali-
dated self-report instruments for assessment of MVPA
and dietary intake. Studying a diverse cohort of college
students is also a strength as the current microbiome
literature has largely ignored this age group and
infrequently includes individuals from all races and
ethnicities.

Conclusions
In summary, this study provides observational support
for the importance of regular physical activity in shaping
the gut microbiome during a period of continued growth
and development. Data from this study suggest that
while beta-dispersion differed among high and low
macronutrient consumers or physical activity categories,
between-group distances were not significantly different
among these categories. Specific taxa associated with
health were differentially more abundant among those
reporting greater self-reported fiber intakes and MVPA.
While these results are promising, more research is
warranted to fully elucidate the role of physical activity
and diet in modulating the gut microbiome. Being one
of the first studies to examine the gut microbiome in
college-aged subjects, opportunities for further investiga-
tion include assessment of specific physical activities,
exercise interventions assessing different modes and
duration of activity, and evaluation of diet and physical
activity interactions. Next steps will include hypothesis
testing in suitable animal models and human cohorts
that utilize carefully designed, longitudinal approaches
to elucidate cause and effect relationships between
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dietary and physical activity effects on the gut micro-
biome. This work will further identify microbial bio-
markers of health and enhance our understanding of
how changes in diet and physical activity impact
health outcomes including weight gain, a common
health outcome among college students and humans
of all ages.

Materials and methods
Healthy college students living in on-campus housing,
who were English speaking, and at least 18 years of age
were eligible to participate in this cross-sectional study.
This cohort of eligible students were recruited from a
larger study [63] that used mobile ecological momentary
assessment methodology to assess the influence that
social networks have on physical activity, dietary intake,
and body weight in two residence halls at Arizona State
University in Tempe, Arizona. Exclusion criteria for this
study included a history of malabsorptive disorders, high
blood pressure, eating disorders, HIV infection, diabetes,
and/or the use of antibiotics, antifungals, or probiotics
in the 2 to 3 months prior to the study. This study was
conducted during the Fall 2014 and Spring 2015 semes-
ters. The Arizona State University (ASU) Institutional
Review Board approved (STUDY00002019) this study
and all participants provided written informed consent.
Participant age, gender, race/ethnicity, and other

demographic data were provided via a self-reported,
web-based questionnaire that was completed upon entry
into the parent study. Height and weight measurements
were measured by trained research staff. Each measure-
ment was taken up to three times and the two closest
values within 0.5 cm and 0.5 kg of each other, respect-
ively, were averaged. These averaged values were then
used to calculate body mass index (BMI) and categorize
participants based on the CDC guidelines as follows:
BMI < 18.5 kg/m2 was considered underweight; BMI ≥
18.5 kg/m2 and ≤ 24.9 kg/m2 was considered normal
weight; BMI ≥ 25.0 kg/m2 and ≤ 29.9 kg/m2 was consid-
ered overweight; and BMI ≥ 30.0 kg/m2 was considered
obese [64].
Physical activity habits were determined using the

Godin-Shephard Leisure-Time Physical Activity Question-
naire (see Additional file 2) [65]. The Godin-Shephard
protocol has been validated as an appropriate method to
measure physical activity habits in college-aged males and
females [65]. Sedentary activities were also measured
using a validated survey (Additional file 2) [66].
The ASA24 24-h dietary recall was used to assess

students’ habitual dietary intake. Food and beverage in-
take was recorded from midnight to midnight on the
previous day. The website provided images to guide
participants on selecting the correct portion size for
each item they consumed. Participants were asked to

complete 3 days of dietary recall (2 weekdays and 1
weekend day) which has been validated as a representa-
tive and accurate summary of habitual nutrient intake
[67, 68]. Days of intake were dropped if caloric intake
was below 500 or in excess of 5000 kcal. If a participant
did not have at least 1 day of adequate dietary intake
they were excluded from the study. The validated
ASA24 [69] utilizes the US Department of Agriculture’s
Automated Multiple Pass Method (AMPM) [70] and
measures intake by using the USDA’s Food and Nutrient
Database for Dietary Studies (FNDDS). Using data from
the ASA24–2014 Daily Total Nutrients Analysis File
(TN), we examined total grams of protein, fat, carbohy-
drates, and fiber.
Each study participant was provided with a fecal

sample collection kit (Commode Specimen Collection
Kit, Fisher Scientific, Anthem, AZ) in order to provide a
single fecal sample for analysis. Collection kits were
distributed to participants in small insulated cooler bags
containing ice packs to keep samples cold while in tran-
sit post-collection. Before participants left with the kit, a
brief demonstration on how to collect the sample was
provided along with a sheet of instructions inside the
cooler bag. Participants were asked to freeze their ice
packs immediately so that they were frozen at the time
of sample collection. Ice packs were rated to stay frozen
for 36–48 h in an insulated container. All stool samples
were retrieved from participants and delivered to the
clinical research facility within 24 h of collection. Stool
samples were stored at − 80 °C to preserve the microbial
community.
Assessment of the gut microbiome in fecal collections

was carried out at the Biodesign Institute at ASU in
Tempe, Arizona. Extraction of microbial DNA from
fecal samples was accomplished using the PowerSoil
DNA isolation kit as described by the manufacturer
(MoBio Laboratories Ltd., Carlsbad, CA) using a bead-
beater (BioSpec, Bartlesville, OK). Amplification of the
16S rRNA gene sequence was completed in triplicate
PCRs using 96-well plates. Barcoded universal forward
515F primers and 806R reverse primers containing Illu-
mina adapter sequences, which target the highly con-
served V4 region, were used to amplify microbial DNA
[71, 72]. These primers were selected as they are recom-
mended by the Earth Microbiome Project [71, 72] and
the National Institutes of Health Human Microbiome
Project [73] to enhance reproducibility and comparabil-
ity to other studies while obtaining broad coverage of
Bacteria. PCR, amplicon cleaning and quantification
were performed as previously outlined [72]. Equimolar
ratios of amplicons from individual samples were pooled
together before sequencing on the Illumina platform
(Illumina MiSeq instrument, Illumina, Inc., San Diego,
CA) at ASU’s DNASU Genomics Core Facility. Raw
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Illumina microbial data were cleaned by removing short
and long sequences, sequences with primer mismatches,
uncorrectable barcodes, and ambiguous bases using the
Quantitative Insights Into Microbial Ecology (QIIME)
software, version 1.9.1, as previously described [74].
Taxonomic assignments and operational taxonomic
units (OTUs) were determined using the closed refer-
ence Greengenes database [75] at 99% similarity. The
OTU table was filtered for singletons by using the
QIIME script filter_otus_from_otu_table.py.
OTUs observed fewer than two times were removed
from the table.
All statistical analyses were completed using JMP Pro

13 and QIIME 1.9.1 statistical and bioinformatics soft-
ware packages. Data were expressed as mean ± SD or
median (interquartile range) of microbiota frequencies/
proportions based on the normality of the data. BMI
data were expressed both continuously and categorically
(underweight, normal weight, overweight, and obese).
Wilcoxon-Kruskal Wallis tests were carried out to assess
group differences (e.g. BMI, screen time, MVPA) in the
Firmicutes:Bacteroidetes (F:B) ratio. Phylogenetic diver-
sity measures were carried out in QIIME to determine
alpha (within-sample) diversity metrics via Faith’s PD.
Principal coordinates analysis (PCoA) was performed for
beta (between-sample) diversity analysis, using both
weighted and unweighted unique fraction metric (Uni-
Frac) distances (measure of phylogenetic distance
between sets of taxa in a phylogenetic tree as a fraction
of the branch length on the tree), on the 99% OTU
composition and abundance matrix [76]. UniFrac dis-
tance metrics group comparisons were performed for
self-reported MVPA, screen time, and dietary intake
variables. Linear discriminant analysis (LDA) effect size
(LEfSe) was performed to identify microbial taxa that
were differentially abundant by MVPA and dietary fiber
consumption groups [77]. Findings were considered
significant at p < 0.05 following adjustments for multiple
comparisons. Sample sequences were deposited at the
NCBI/Sequence Read Archive (SRA) under project
PRJNA473006 with accession numbers: SAMN09258197
- SAMN09258278.

Additional files
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Additional file 2: Physical Activity and Sedentary Activity Questionnaire
Details. This file offers additional information regarding questions used in
survey instruments and scoring methods to tabulate or summarize data
for statistical analyses. (PDF 69 kb)

Additional file 3: Table showing participant characteristics including
demographics, behavioral data and alpha diversity metrics. (XLSX 21 kb)

Additional file 4: Table showing taxonomic abundance data for all
genera. (XLSX 113 kb)
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