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Abstract

Background: DNA metabarcoding, commonly used in exploratory microbial ecology studies, is a promising method
for the simultaneous in planta-detection of multiple pathogens associated with disease complexes, such as the
grapevine trunk diseases. Profiling of pathogen communities associated with grapevine trunk diseases is particularly
challenging, due to the presence within an individual wood lesion of multiple co-infecting trunk pathogens and other
wood-colonizing fungi, which span a broad range of taxa in the fungal kingdom. As such, we designed metabarcoding
primers, using as template the ribosomal internal transcribed spacer of grapevine trunk-associated ascomycete fungi
(GTAA) and compared them to two universal primer widely used in microbial ecology.

Results: We first performed in silico simulations and then tested the primers by high-throughput amplicon sequencing
of (i) multiple combinations of mock communities, (ii) time-course experiments with controlled inoculations, and (iii)
diseased field samples from vineyards under natural levels of infection. All analyses showed that GTAA had greater
affinity and sensitivity, compared to those of the universal primers. Importantly, with GTAA, profiling of mock
communities and comparisons with shotgun-sequencing metagenomics of field samples gave an accurate
representation of genera of important trunk pathogens, namely Phaeomoniella, Phaeoacremonium, and Eutypa, the
abundances of which were over- or under-estimated with universal primers.

Conclusions: Overall, our findings not only demonstrate that DNA metabarcoding gives qualitatively and
quantitatively accurate results when applied to grapevine trunk diseases, but also that primer customization and
testing are crucial to ensure the validity of DNA metabarcoding results.

Keywords: High-throughput DNA sequencing, Amplicon sequencing, Metagenomics, Grapevine trunk diseases, Esca,
Eutypa dieback, Botryosphaeria dieback, Phomopsis dieback

Background
Grapevine trunk diseases affect the longevity and product-
ivity of grapevines (Vitis vinifera) in all major growing re-
gions of the world [1–4]. They are caused by numerous
species of fungi that infect and damage the wood, causing
chronic infections [5–7]. Among the most common
grapevine trunk diseases are Eutypa dieback (primarily
caused by Eutypa lata), Esca (primarily caused by Phaeoa-
cremonium minimum, Phaeomoniella chlamydospora, and

Fomitiporia spp.), Botryosphaeria dieback (primarily
caused by Neofusicoccum parvum, Diplodia seriata,
among other fungi in the Botryosphaeriaceae family),
Phomopsis dieback (primarily caused by Diaporthe
ampelina), and Black foot (caused by Cylindrocarpon,
Campylocarpon, and Ilyonectria spp.) [4, 8–11]. Because
of the characteristic mixed infections, trunk diseases rep-
resent a disease complex [12, 13]. In addition to infections
of pruning wounds by airborne and splash-dispersed
spores, trunk pathogens may be introduced to a healthy
vineyard by asymptomatic propagation material. Fungi
associated with grapevine trunk diseases have been found
in rootstock mother-plants, rooted rootstock cuttings,
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bench-grafts, and young grafted vines [14–16]. The pres-
ence of multiple species in the same vine complicates dis-
ease diagnosis and, consequently, proper timing of
practices to limit infection in the vineyard and to propa-
gate clean nursery stock.
Taxonomic identification of fungi associated with

grapevine wood is currently done by the following
steps: (i) plating grapevine woody tissue on
nutrient-rich agar plates, (ii) hyphal-tip colony isola-
tion to pure cultures, (iii) DNA extraction from fun-
gal mycelium, (iv) PCR amplification of taxonomically
informative loci, such as the nuclear ribosomal in-
ternal transcribed spacer (ITS), elongation factor, and
β-tubulin, and (v) comparisons of amplicon sequences
with sequence databases [17–19]. PCR-based diagnos-
tics represent a significant improvement compared to
traditional approaches that depend on morphological
features for species identification and, thus, require
skilled expertise in mycology [20]. However, these ap-
proaches still require an initial culturing step, which
may limit the detection of slow-growing fungi. Alter-
natively, with species or genus-specific markers, PCR
could be used to determine in planta the presence of
certain species, thereby skipping the culturing step
[21, 22]. One limitation of this approach, however, is
that it may not detect all trunk pathogens in a given
sample [23, 24]. Indeed, certain combinations of fungi
may be important in the severity of symptom expres-
sion [25].
Because trunk pathogens cause mixed infections, attempts

have been made to characterize the composition of the
trunk-pathogen community. For example, finger-printing
techniques like Automated Ribosomal Intergenic Spacer
Analysis (ARISA) [26] and Single-Strand Conformation
Polymorphism (SSCP) [27, 28] have been used to compare
fungal communities among different samples of grapevine
wood, although these do not identify trunk pathogens to the
species level.
Quantitative PCR (qPCR) has also been applied to the

detection of grapevine trunk pathogens, including strat-
egies that allow the monitoring of multiple species sim-
ultaneously [21, 22, 24, 29, 30]. A DNA macroarray
system, based on reverse dot-blot hybridization con-
taining oligonucleotides complementary to portions of
the β-tubulin locus, was developed for species-level
identification, specifically for detection of trunk patho-
gens that cause Young vine decline [23]. We previously
described a strategy, based on untargeted shotgun se-
quencing of metagenomic DNA and RNA, to detect
and quantify trunk pathogens in planta simultaneously
[13]. Despite clear advantages over other approaches,
this method still has its limitations, such as relying on
assembled genomes, as well as costly library prepar-
ation and computationally intensive analyses.

DNA metabarcoding, which has been used extensively
for the analysis of microbial communities [31–35], may
provide a cheaper and more scalable method for the
characterization of trunk-pathogen communities. This
approach has already been applied to other pathosystems
to address a variety of research objectives. For example,
DNA metabarcoding has been used to identify candidate
pathogens [36, 37] and potential biocontrol agents [38],
to profile putative plant pathogens associated with in-
sects [39], and to diagnose quarantine pathogens as part
of national plant-protection programs [40–42]. DNA
metabarcoding infers taxonomic composition of com-
plex biological samples by amplifying, sequencing, and
analyzing target genomic regions [43, 44]. The ribosomal
ITS, which is under low evolutionary pressure and, thus,
presents high levels of variation between closely related
species, has been commonly used as a barcode for the
analysis of fungal biodiversity [45, 46]. ITS is typically
amplified by universal primers that anneal to the con-
served flanking sequences. The “universality” of the
primers, which derives from their ability to amplify a
broad range of taxonomically unrelated species across
the fungal Kingdom [47], is exploited in studies that aim
to profile fungal communities, typically in exploratory
analyses of environmental samples. We hypothesized
that although universal primers may capture broad bio-
diversity in exploratory analyses, they may provide less
accurate representation of microbial pathogen commu-
nities than primers that are designed and optimized to
amplify species known to be associated with those com-
munities, based on prior knowledge of disease etiology.
After all, grapevine-trunk diseases are one of the most
widely studied disease complexes in terms of species
composition (Lamichane and Venturi, 2015). In this
work, we designed and evaluated metabarcoding primers
that were optimized to amplify the ITS regions of grape-
vine trunk pathogens. By a combination of in silico sim-
ulations, and analyses of ‘mock’ communities, samples
from controlled inoculations, and samples from symp-
tomatic vineyards, we demonstrated that community-
customized metabarcoding provides both qualitatively
and quantitatively a more accurate representation of
trunk-pathogen communities than common universal
primers.

Results
Primer design, selection, and validation with target
species
We designed multiple degenerate primers that target the
internal transcribed spacer (ITS) of grapevine trunk-as-
sociated ascomycetes (GTAA) using the TrunkDiseaseID
as reference database [20]. Primer potential was determined
in silico, considering the amplicon size and estimating the
number of sequence hits to the database, their alignment
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mismatches, and gap scores. From a total of twenty forward
and three reverse degenerate primers, primers GTAA182f
and GTAA526r (GTAA, hereinafter) performed the best
and were selected for further testing. While the BITS and
SP primers target the ITS1 region, the selected GTAA
primers target the entire ITS2 region with the forward and
reverse primers aligning to the 5.8S ribosomal RNA and
the large subunit ribosomal ribonucleic acid (LSU), respect-
ively (Table 1 and Fig. 1a). The primers produced ampli-
cons of approximately 350 bp from isolates of seven trunk
pathogens, as expected based on the amplicon size pre-
dicted from the 213 ITS sequences of ascomycetes in the
TrunkDiseaseID database (301.72 ± 7.53 bp; Fig. 1b). We
obtained a similar amplicon size when the GTAA primers
were used to amplify total DNA extracted from naturally
infected grapevines with trunk-disease symptoms, including
leaf symptoms of Esca or Eutypa dieback and wood cankers
(Fig. 1c). Amplicon sequences matched the correct species,
when aligned to our custom grapevine trunk pathogen-fo-
cused database using BLASTn, thereby confirming the
ITS2 region amplified by the GTAA primers is informative
for taxonomic assignments (Additional file 1). For field
samples, multiple bands in Fig. 1c (e.g.: WC4) were likely
caused by the size diversity among the ITS2 regions in the
taxa amplified.
GTAA primer precision, sensitivity, efficiency, and

usefulness for metabarcoding of grapevine trunk patho-
gens were compared to those of the BITS [48] and SP
primers [49]. The BITS primers are widely used for fun-
gal metabarcoding analysis in vineyards and grape must
(e.g.: [50–54]), whereas the SP primers [49] were imple-
mented in the Earth Microbiome Project (http://
www.earthmicrobiome.org), and were used in recent mi-
crobial ecology studies [55–57] (Table 1 and Fig. 1a).
Samples were from DNA extracted from potted grape-
vines either inoculated with N. parvum or from
non-inoculated controls. By sampling PCR reactions
every five cycles, the GTAA amplicon was visible on an
agarose gel starting at 20 cycles, whereas those of SP
and BITS were visible at 25 and 30 cycles, respectively
(Fig. 1d). Furthermore, SP produced multiple bands,
which may be due to non-specific binding and/or
chimeric amplicons. Based on qPCR with the same

samples, the average Ct values for GTAA were
approximately nine cycles lower than those of BITS
(P < 1.85e− 04) and SP (P < 3.50e− 04) (Fig. 1e). Overall,
our findings suggest a higher affinity of the GTAA
primers, when amplifying samples containing grape-
vine trunk pathogens.

In silico simulation of amplification and taxonomic
classification
We then carried out an in silico simulation that com-
pared the potential amplification bias and taxonomic
usefulness of GTAA, BITS, and SP primers. We com-
piled a custom database of 521 full-length ITS sequences
across 17 genera of fungi commonly associated with
grapevine trunk diseases (Fig. 2a, Additional file 2; [20]).
We included only full-length ITS sequences to be able
to compare primers that amplify different regions of the
ITS (Fig. 1a). In silico amplification of each sequence in
the custom database was carried out considering all al-
ternative sequences of degenerated primers and allowing
a series of mismatches between primer and template se-
quences. In silico amplification was carried out testing
all possible combinations of allowed mismatches, from 0
to 5 mismatches in the first five nucleotides in 5′ of the
primer and 0 to 2 mismatches in the remaining 3′ nu-
cleotides of the primer. GTAA primers amplified a
higher number of sequences than BITS and SP primers,
for every parameter tested (Fig. 2b). When no mis-
matches between primer and target were allowed, GTAA
primers amplified 85.80%, SP primers amplified 13.63%,
and BITS primers were predicted to amplify none of the
sequences in the database. When at least two mis-
matches were allowed in the tail of the primer, BITS and
SP primers amplified only 16.70 and 30.33% of target se-
quences, respectively, whereas GTAA primers amplified
86.75%. With the most permissive parameters, GTAA
primers amplified 98.08% of the sequences, and BITS
and SP primers amplified 97.89 and 25.91%, respectively.
The requirement of multiple mismatches for BITS
primers to achieve a similar number of sequences as
GTAA primers is consistent with the cycle-sampling re-
sults (Fig. 1d), and suggests that GTAA primers are
more efficient than BITS at amplifying the ITS of grape-
vine trunk pathogens.
To determine if amplicons generated by GTAA

primers are informative for taxonomic assignment, we
analyzed with Mothur [58] the amplicons that were gen-
erated by the simulation using the 521 full-length ITS
sequences as database. Mothur uses a k-mer based ap-
proach to compare the query to the database and assigns
the query to the taxonomy with the highest probability.
By comparing the assigned genera (observed) with the
expected genera for each primer set we assessed false
positive (FP; i.e., erroneously assigned), false negative

Table 1 Metabarcoding primer sequences targeting the ITS
region used in this study

Primer name Direction Primer sequence 5′ to 3′ Citation

GTAA Forward AAAACTTTCAACAACGGATC this study

GTAA Reverse TYCCTACCTGATCCGAGGTC this study

BITS Forward CTACCTGCGGARGGATCA [48]

BITS Reverse GAGATCCRTTGYTRAAAGTT [48]

SP Forward CTTGGTCATTTAGAGGAAGTAA [49]

SP Reverse GCTGCGTTCTTCATCGATGC [49]
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(FN; i.e., not amplified or not assigned), and true positive
(TP; i.e., correctly assigned, Fig. 2c) rate. We calculated
rates of FP, FN, and TP for all combinations of

mismatches to estimate the overall performance of each
primer set. GTAA primers had the highest sensitivity
(TP/(TP/FN)*100 = 89.50 ± 6.45%), followed by BITS

A

B C

D E

Fig. 1 Primer design and testing. a Schematic representation of the annealing sites of forward and reverse GTAA, BITS, and SP primers in the
fungal ribosal ITS. Reported amplicon sizes were calculated based on the ITS sequence of Eutypa lata (KU320617.1) as an example. b Bioanalyzer
electropherograms showing PCR amplicons sizes generated using GTAA primers from purified fungal grapevine trunk pathogens: E. lata, Phaeoa.
minimum, Dip. seriata, N. parvum, Phaeom. chlamydospora, and Dia. ampelina. Agrobacterium tumefaciens, V. vinifera and nuclease-free water were
included as controls. c Bioanalyzer electropherograms showing PCR amplicons sizes generated using GTAA primers from selected field samples of
mature vines infected with different trunk disease symptoms. AH: apparently healthy, ED: Eutypa Dieback, ES: Esca,WC: wood cankers (no leaf
symptoms), and numbering corresponds to different biological replicates (same samples as in Fig. 5). d PCR products of GTAA, BITS, and SP
primers from grapevine samples inoculated with N. parvum at six weeks post-inoculation sampled every five-cycles and visualized on an agarose
gels. L: 100 bp Ladder. e Cycle thresholds (Ct) measured by qPCR of the same samples shown in (d)
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(54.25 ± 47.86%), and SP (20.50 ± 2.53%). SP and GTAA
primers displayed similar precision (SP: TP/(TP +
FP)*100 = 97.50 ± 1.00%; GTAA: 97.00 ± 0.00%), which
was higher than that of BITS primers (72.25 ± 48.18%).
The different performance of the three primer sets in
the simulation appeared to be mostly due to amplifica-
tion bias against certain genera (Fig. 2d). GTAA primers
amplified and correctly assigned to the proper genera a
larger fraction of sequences than the other two primer
sets for 14 out of 17 genera tested. This was the case for
the following widely distributed trunk pathogens: Eutypa
(GTAA: 98.0 ± 4.0%, BITS: 53.8 ± 53.8%, and SP: 44.0 ±
4.0%), Diaporthe (GTAA: 96.5 ± 1.3%, BITS: 51.3 ±
53.6%, and SP: 18.7 ± 9.3%), and Phaeoacremonium
(GTAA: 95.5 ± 3.0%, BITS: 51.5 ± 56.1%, and SP: 18.7 ±
9.0%). BITS primers correctly assigned more sequences
for Lasiodiplodia (GTAA: 71.0 ± 8.0%, BITS: 75.0 ±
50.0%, and SP: 0.0 ± 0.0%) and Cylindrocarpon (GTAA:
35.5 ± 41.0%, BITS: 46.3 ± 33.54%, and SP: 0.0 ± 0.0%).
SP primers correctly assigned more sequences for Cam-
pylocarpon (GTAA: 50.0 ± 57.7%, BITS: 50.0 ± 57.7%,
and SP: 75.0 ± 50.0%). Overall, this simulation predicted
that, unlike the two universal primer sets, GTAA
primers amplify ITS of more trunk pathogens and allow
taxonomic assignment with greater sensitivity (i.e.,

higher true positive rate) and specificity (i.e., lower false
negative rate). SP primers were not included in further
experiments, due to their poor performance in these
early stages.

Analysis of mock communities and infection time course
To evaluate the primers for characterizing the species
composition of mixed infections, we sequenced mock
community samples with an Illumina MiSeq (Fig. 3a-b).
Mock samples were created by mixing DNA of appar-
ently healthy grapevine stems and fungal DNA as fol-
lows: 90% grape with 10% of fungal DNA (E. lata,
Phaeoa. minimum, or Phaeom. chlamydospora), 80%
grape with 10% of each of two fungal isolates, or 70%
grape DNA with 10% of each of three fungal isolates.
Another set of samples were created with equal concen-
trations of DNA of a total of six species (see more de-
tails in Methods and Additional file 3). We tested
multiple approaches for taxonomic assignment.
Although they all delivered very similar result, the OTU
classifier Mothur was selected for further analysis be-
cause it overall delivered the greatest correlation be-
tween observed and expected values (Additional file 4).
Although the DNA was extracted from stems with no
symptoms of trunk disease, both primer sets detected

A

D

B

C

Fig. 2 In silico simulation of amplification and taxonomic assignment. a Neighbor-joining tree of the full-length ITS sequences included in the
custom database used in the simulation. b Barplots showing the number of sequences predicted to be amplified by each primer set at different
combinations of mismatches. H: primer head. T: primer tail. Numbers correspond to the number of mismatches either in H or T. c Barplots
showing the number of false negative (FN), false positive (FP), and true positive (TP) sequences with each primer set. d Percentage of sequences
per genus correctly assigned with each primer set at the different mismatch combinations
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fungi, mostly belonging to the genera Campylocarpon
and Phaeoacremonium (Fig. 3a). In these samples, com-
pared to the GTAA primers, the BITS primers assigned
a greater proportion of reads to known taxa, likely be-
cause GTAA were designed to target taxa associated
with trunk diseases. When grape DNA was mixed with
DNAs of Phaeoa. minimum and Phaeom. chlamydospora
both primer sets identified the correct taxa, with small rela-
tive difference from the expected values [relative difference
between expected and observed (δ) in GTAA= 11.02 ±
7.0% and in BITS = 16.68 ± 11.39%]. For mock communities
including Eutypa, GTAA primers detected this trunk
pathogen in similar amounts to the expected abun-
dance (δ = 9.74 ± 1.10%), whereas BITS primers under-
estimated its abundance (δ = 88.87 ± 1.27%). In mock

communities with equal concentrations of DNA from
E. lata, Phaeoa. minimum, Phaeom. chlamydospora,
N. parvum, D. seriata, and D. ampelina, the correl-
ation of expected and observed abundances in these
mock communities was greater for GTAA (R = 0.92)
than BITS (R = 0.67), though there was no significant
difference between both primers (P = 0.16, Fig. 3b;
Additional file 5). The BITS primers showed an
underrepresentation of Eutypa (δ = 16.70 ± 0.12%), and
Phaeoacremonium (δ = 13.10 ± 0.63%), and overrepresen-
tation of Phaeomoniella (δ = 24.34 ± 1.56%) (Fig. 3a).
Because DNA was mixed in equal amounts, the expected
relative abundance of each genus was 16.6%. GTAA
primers detected Eutypa at 16.42 ± 2.41%, whereas BITS
primers detected this trunk pathogen at 0.05 ± 0.03%. In

A

B

Fig. 3 Results of DNA metabarcoding of mock communities. a Stacked barplots showing the relative abundance of genera in the mock
communities with different proportion of fungal species identified using the GTAA and BITS primers. Eu: Eutypa, Pa: Phaeoacremonium, Pm:
Phaeomoniella, Di: Diaporthe, Dp: Diplodia, Np: Neofusicoccum, and Vv: Vitis vinifera. b Linear correlations between observed and expected
abundances for each genus contained in the mock community. R values correspond to Pearson’s correlation coefficients
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the case of Diplodia, GTAA primers estimated the abun-
dance of the genus at 3.13 ± 0.48% and BITS primers at
28.9 ± 0.8%. Interestingly, neither primer set was able to
detect properly Diaporthe, reporting only 0.58 ± 0.23%
and 0.87 ± 0.15% for GTAA and BITS primers, respect-
ively. Nonetheless, GTAA primers provide a better quali-
tative and quantitative representation of important trunk
pathogens.
We then tested the two primers using grape samples

collected at different time points after controlled inocu-
lation with a trunk pathogen. The objective of this ana-
lysis was to determine if the metabarcoding approach
could detect quantitative differences between samples at
early and late stages of infection. Neofusicoccum parvum
was selected for this analysis as it is a fast growing and
aggressive trunk pathogen and, therefore, can be used
for studying grapevine stem colonization over a reason-
able amount of time. Vines were inoculated with N. par-
vum and stem samples were collected at 24 h, 2 weeks,
and 6 weeks post-inoculation. Plants non-inoculated
wounded (NIW) and non-inoculated non-wounded
(NINW) were included as controls. As expected, Neofusi-
coccum was predominant in the inoculated wounded (IW)
samples, but absent from the controls (Fig. 4), except for a
single NIW sample, possibly due to cross-contamination
during wounding or from contamination of the propaga-
tion material. The two primer sets provided similar fungal
composition profiles characterized by five-fold increase in

the average percentage of Neofusicoccum between 24 h
and 6 weeks post-inoculation.

Analysis of field samples and comparison with reference-
based shotgun metagenome sequencing
We then tested the primers on naturally infected grape-
vines. We used the same 28 field samples described in
[13], which allowed us to compare the metabarcoding
approach with the quantitative taxonomic profiles ob-
tained by a reference-based shotgun metagenome se-
quencing. The samples were grouped according to
symptoms into Eutypa dieback (ED), Esca (ES), wood
canker without foliar symptoms (WC), and
apparently-healthy (AH). All 28 field samples were amp-
lified with both GTAA and BITS primers. A subset of 14
samples was amplified also using SP primers. Taxonomic
classification was performed with multiple methods and
results compared to the whole-genome metagenomics
results, which, at least in case of GTAA, delivered very
similar results (see more details in Methods and Add-
itional file 6). Mothur results had the greatest correlation
with shotgun metagenome sequencing for both primers
and were used for further analyses. In addition to those
with genomes in the multispecies reference, taxonomy
assignment based on amplicon metabarcoding detected
other 14 genera with abundances > 0.05% in one or
more samples. Both GTAA and BITS primer sets identi-
fied Alternaria, Cyphellophora, and Penicillium, whereas

Fig. 4 Results of DNA metabarcoding of an infection time-course. Stacked barplots showing the relative abundance of the genera detected in a
time course experiment after inoculation with N. parvum. IW: wound-inoculated with N. parvum; NIW: non-inoculated non-wounded; NINW: non-
inoculated non-wounded controls
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Cladosporium, Aureobasidium, Gibberella, and Crypto-
valsa were only identified by GTAA primers, and
Angustimassarina, Exophiala, Erysiphe, Meyerozyma,
Acremonium, and Vishniacozyma by BITS primers.
GTAA primers revealed species abundances at very
similar levels to those obtained by metagenomics
analysis (Fig. 5a), with a strong linear correlation be-
tween the two approaches (R = 0.95; Fig. 5b), which was
higher than those of both BITS (R = 0.63) and SP
primers (R = 0.27). In agreement with the other results
described above, BITS primers underestimated Eutypa
in Eutypa-dieback samples and overrepresented Phaeo-
moniella in Esca samples. The even weaker correlation
obtained with SP primers was due to the strong bias

against Eutypa and Diaporthe. Surprisingly, Diaporthe,
which was detected at much lower level than expected in
the mock communities, showed a good correlation be-
tween metabarcoding and metagenomic results with both
GTAA (R = 0.90) and BITS (R = 0.71) primers (Fig. 5c &
d). This inconsistency confirms the difficulty in resolving
this genus [59]. GTAA primers showed stronger correla-
tions across all genera of trunk pathogens represented in
the multi-genome reference (0.89 < R < 0.99, Fig. 5c) com-
pared to those of BITS (0.58 < R < 0.75). Both primer sets
overestimated Neofusicoccum, potentially because of the
presence of other Botryosphaeriaceae, whose sequences
may have been wrongly assigned to Neofusicoccum as ITS
has been shown to poorly differentiate the species in this

Fig. 5 Results of DNA metabarcoding of field samples and comparisons with shotgun whole-genome metagenomics (WGS). a Stacked
barplots showing the relative abundance of the genera detected by WGS and DNA metabarcoding with GTAA, BITS, and SP primers. The
28 samples were collected from mature vines in the field with the following trunk disease symptoms: apparently healthy (no foliar or
wood symptoms), Eutypa Dieback, Esca and wood cankers (no leaf symptoms). The numbering corresponds to different biological
replicates grouped by the disease symptoms displayed by the grapevines from where they were collected. b Scatter plots showing the
correlations of the relative abundance obtained by DNA metabarcoding and WGS. c Scatter plots showing the correlations of the relative
abundance separately for each genus obtained by DNA metabarcoding using the GTAA primers and WGS. d Scatter plots showing the
correlations of the relative abundance separately for each genus obtained by DNA metabarcoding using the BITS primers and WGS. R
values correspond to Pearson’s correlation coefficients
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family [59]. Overall, our findings confirm the universal
primers have a significant bias against important taxa and
were outperformed by our GTAA primers for trunk
pathogens.

Discussion
In this study, we tested the application of DNA metabar-
coding to profile the fungal taxa associated with grape-
vine trunk diseases. We show that DNA metabarcoding
of ribosomal ITS amplified with commonly-adopted uni-
versal primers consistently misrepresented the abun-
dance of important trunk pathogen species, such as
Eutypa and Phaeomoniella. The customization of primer
design using trunk pathogen sequences as template led
to improve the results with greater sensitivity. This was
likely due to greater sequence similarity between the
GTAA primers and the ITS of the grapevine trunk path-
ogens they target. On average the sequence identity of
the grapevine trunk pathogen targets was significantly
greater with the GTAA primers (97.4 ± 5.5%; P < 2e-16)
than with the other universal primers (BITS: 90.2 ± 7.1%;
SP: 83.3 ± 0.2.2%) used in the study. The lower identity
of the universal primers was likely responsible for the
bias of the universal primers against important trunk
pathogen taxa. Amplification bias of universal ITS
primers due to higher levels of mismatches for certain
taxonomic group has been observed in previous studies
[35, 60–63]. Importantly, we also showed that the GTAA
primers had higher sensitivity while maintaining a preci-
sion threshold for taxonomic assignment of 97%, sug-
gesting that the choice of the target region within the
ITS, in this case the ITS2, also played a role in improv-
ing the DNA metabarcoding for these organisms. We
should stress out that BITS and SP primers are not the
only available universal primers and the goal of this
study was not to provide a comprehensive survey of all
universal ITS metabarcoding primers. BITS and SP were
selected, because they are both widely used DNA bar-
coding primers, including in studies conducted on vine-
yard and wine must samples [49–54]. We cannot rule
out that other universal primers targeting the ITS1 or
ITS2 regions that were not tested in this study may have
performed differently. However, the results presented in
this study show that universal primers may not be al-
ways appropriate to study a fungal community and,
when fungal community composition is available, re-
searchers should consider customizing their DNA meta-
barcoding primers. In addition, we illustrate the value of
assessing both the amplification and taxonomy useful-
ness of the metabarcoding primers in silico prior to
downstream wet lab evaluations.
In addition to customization of primers, the inclu-

sion of other gene targets as additional DNA bar-
codes should help overcome some of the limitations

associated with the ITS region, such as copy number
variation between and within species and low reso-
lution in separating some phylogenetically closely re-
lated fungal species [45, 64]. For example, the ITS
region does not accurately identify species of
plant-pathogenic fungi like Alternaria, Botryosphaeria,
and Diaporthe [59]. The genera for which the GTAA
primers consistently underestimated abundances like
Lasiodiplodia, Botryosphaeria, Diplodia, and Dia-
porthe are known to be difficult to be resolved with
the ITS region alone [59]. The high correlation be-
tween metagenomics and metabarcoding results using
the GTAA primers suggest that copy number vari-
ation of the ITS region is not an overwhelming issue
for the grapevine trunk pathogens present in the field
samples.
Nonetheless, we expect that the inclusion of additional

barcodes, such as β-tubulin and elongation factor 1-α,
will help increase accuracy of taxonomic identification at
the species level and help measure those genera for which
the ITS is known not to be effective [20, 23, 65, 66].

Conclusions
As trunk diseases are complex diseases caused by mixed
infections, DNA metabarcoding should provide a rapid
and effective method for high-throughput multispecies
profiling, overcoming the limitations of currently applied
methods. Universal primers are advantageous in explora-
tory analysis where a priori knowledge on the taxonomic
composition of the samples is limited or not available.
However, a more targeted approach should be used
when the objective is to profile a more defined group of
microorganisms, like the grapevine trunk pathogens
which symptoms have been consistently associated with
certain fungal species [4, 20, 67]. Overall, the results pre-
sented here demonstrated that DNA metabarcoding can
be applied to grapevine trunk diseases. With further im-
provement of taxonomic identification by combining
multiple barcoding loci and of quantification by meas-
urement of direct correlation between fungal biomass
and PCR amplification cycles, we envision DNA meta-
barcoding to be routinely applied in trunk pathogen re-
search and profiling. DNA metabarcoding provides
multiple advantages to methods employed in the past.
Namely, there is no need of fungal isolation, it allows
high number of samples to be analyzed at the same time
given the multiplexing potential of the technology, and takes
advantage of the constantly improving high-throughput se-
quencing technologies. Since wood pathogens may remain
asymptomatic in young, non-stressed vines, propagation ma-
terial may contain latent fungal infections and may become
symptomatic after planting and serve as a source of inocu-
lum for further infections of potentially clean plants. By
allowing the rapid testing of large number of wood samples
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from mother plants in foundation blocks and propagation
material in nurseries, we expect that the applications of
metabarcoding to trunk pathogen profiling will help reduce
the amount of trunk pathogens introduced into vineyards at
planting as well as the incidence of young vine decline. Our
results also demonstrated that primer customization and
testing are crucial to ensure the validity of DNA metabarcod-
ing results.

Methods
Metabarcoding primers targeting grapevine trunk-
associated ascomycetes (GTAA)
Ribosomal Internal transcribed spacer (ITS) sequences
of trunk pathogens and other wood-colonizing fungi of
grape, specifically in the Division Ascomycota, were re-
trieved from the TrunkDiseaseID.org database [20]. Se-
quences were aligned using ClustalW2 (v2.1; [68]) to
identify conserved regions. Sequence alignments of the
conserved regions were used as input for the metabar-
coding primer design software Primer Prospector v1.0.1
[69], using a sensitivity threshold of 80% and an initial
primer seed size of 5 bp. The ITS sequence of E. lata
(GeneBank KU721859.1) was used as a ‘reference’. The
final primer set was selected based on median amplicon
size, and mismatches, gaps, and numbers of matches to
the sequences in the database. The base pairs ‘AG’ were
used as a linker between the primer and an eight-nu-
cleotide barcodes on the 5′ region of the forward primer
sequence. Barcode sequences were as described in [70].
A list of barcoded forward GTAA primers is listed in
Additional file 7.
A custom database was compiled with full length ITS

sequences of species in the following genera commonly
isolated from grapevines: Botryosphaeria, Diplodia,
Dothiorella, Lasiodiplodia, Neofusicoccum, Phaeomo-
niella, Diaporthe, Phaeoacremonium, Diatrype, Diatry-
pella, Eutypa, Xylaria, Cylindrocarpon, Campylocarpon,
Dactylonectria, Ilyonectria, and Neonectria. Sequences
were retrieved from the NCBI GenBank repository.
Completeness of the ITS sequences was validated using
the hidden Markov models-based software ITSx [71].
Only sequences spanning the entire ITS region (ITS1,
5.8S, and ITS2) were kept for downstream analysis. Spe-
cies and GenBank accessions of the complete ITS se-
quences included in the custom database are listed in
Additional file 2. To reduce redundancy and identify
outliers, the complete ITS sequences were clustered
using the UCLUST algorithm [72] integrated in QIIME
(v1.9.1; [73]) with 97% identity. The longest representa-
tive sequence of each cluster was selected, using the
QIIME ‘pick_rep_set.py’ function. All representative se-
quences were aligned using Mafft v7.271 [74]) with the
‘--auto’ argument and 1000 iterations. Sequences

clustering outside the expected family were removed
from the final custom database.
The program Degenerate In-Silico PCR (dispr, https://

github.com/douglasgscofield/dispr) was used to predict
and evaluate the amplification of sequences of the
custom ITS database, using our GTAA primers, and
universal BITS [48], and SP [49] primers. Dispr
allowed an amplicon size of 100 to 400 bp, all combi-
nations up to five mismatches in the head of the pri-
mer (‘H’ or 5′-most region), and all combinations up
to two mismatches in the tail of the primer (‘T’ or
the remaining 3′-end of the primer). The resulting
amplicons produced in silico were then used for tax-
onomy assignment with 80% confidence, using
Mothur (v1.39.5; [58]), as it is integrated in QIIME
(v1.9.1). The UNITE database v7.2 [75] was used as
taxonomic reference. True positives were defined as
sequences that were assigned to the expected genus,
false positives were sequences assigned to a different
genus, and false negatives were sequences not
assigned to any genus or were not amplified by dispr.
To test primer affinity, quantitative real time PCR

(qPCR) was performed using a QuantStudio 3 instru-
ment (Applied Biosystems). Each 15 μl reaction mixture
contained 2 ng of gDNA, 0.3 μM each primer and, 1X
Power SYBR green PCR Master Mix (Applied Biosys-
tems). The PCR stage included a first denaturation step
(95 °C 10 min), followed by 40 cycles of 95 °C (15 s) and
60 °C (1 min).
To generate mock communities, we combined (i)

DNA from a healthy grapevine with DNA from pure
cultures of three trunk pathogens at different concentra-
tions, or (ii) equal concentrations of DNA from pure
cultures of six trunk pathogens. For the former, grape
and fungal DNA were combined as follows: 90% grape
with 10% E. lata isolate Napa209 [76], Phaeoa. mini-
mum isolate 1119 [77], or Phaeom. chlamydospora iso-
late C42 [78]; 80% grape with 10% of each of two fungal
isolates (in all three pair-wise combinations of the three
isolates); and 70% grape DNA with 10% of each of the
three fungal isolates. For the latter, equal concentrations
of DNA were combined from the same three trunk path-
ogens and three additional species: N. parvum isolate
UCD646So [11], Dia. ampelina isolate Wolf911 [79],
and Diplodia seriata isolate SBen831 [80]. Grape DNA
was extracted from the stems of a non-inoculated,
non-wounded plant; this DNA template came from a
previous experiment [81]. The mock communities con-
taining grape DNA were amplified and sequenced as
three independent samples, whereas the mock commu-
nity of six fungal DNAs was amplified and sequenced as
five independent samples. The fungi used to prepare the
mock communities were grown on Potato Dextrose
Agar (PDA; Difco laboratories, Detroit, MI). DNA was
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extracted as described in [73] and measured with a
fluorometer (Qubit, Life technologies). To test in planta
detection of a trunk pathogen at variable levels of infec-
tion (i.e., from low to high concentrations of fungal bio-
mass over time), DNAs for the infection time course of
N. parvum were extracted from the same samples de-
scribed in [81]. Briefly, 1-year-old potted V. vinifera
‘Cabernet Sauvignon’ FPS 19 plants were inoculated with
isolate UCD646So mycelia. Woody stems were collected
at seven time points: 0 h post inoculation (hpi), 3 hpi, 24
hpi, 2 weeks post inoculation (wpi), 6 wpi, 8 wpi, and 12
wpi. Wood samples from 1 cm below the inoculation site
were collected using flame-sterilized forceps and imme-
diately placed in liquid nitrogen for nucleic acids extrac-
tion. Infections were confirmed by positive recovery of
the pathogen after 5-day growth on PDA.
To test in planta detection of multiple trunk patho-

gens in mixed infection (i.e., to characterize the species
composition of a naturally established trunk-pathogen
community), DNA from the same 28 field samples de-
scribed in [13] was used to make cross-technology com-
parisons. These field samples were collected from
mature vines (> 8 years-old) showing a variety of the
most common symptoms associated with trunk diseases.
Wood samples were collected from distinct plants with
the following combinations of symptoms: Eutypa die-
back foliar and wood symptoms, Esca foliar and wood
symptoms, wood symptoms and no foliar symptoms,
and apparently healthy plants with no foliar or wood
symptoms.

High throughput sequencing libraries
Each sample was amplified using the unique 8-nt bar-
code forward primer sets for GTAA and BITS, to enable
sample multiplexing. The 25-μl PCR reaction mix con-
tained 2 ng of DNA template, 1X Colorless GoTaq flexi
buffer (Promega Corporation, Madison, WI), 1.5 mM
MgCl2, 0.1 mg/ml BSA, 0.2 mM dNTPs, 0.4 μM of each
primer, and 1.25 units of GoTaq Flexi DNA polymerase
(Promega Corporation, Madison, WI). PCR program
(Veriti thermal cycler, Applied Biosystems) was as fol-
lows: initial denaturation at 94 °C for 3 min, followed by
35 cycles at 94 °C for 45 s, 55 °C for 1 min., and 72 °C for
1 min., and a final extension at 72 °C for 10 min. In the
experiments to assess primer affinity, reactions were
stopped after 5, 10, 15, 20, 25, 30, and 35 cycles. Follow-
ing PCR, amplicon size and uniqueness were verified
using gel electrophoresis, and bands were cleaned using
Ampure XP magnetic beads (Agencourt, Beckman
Coulter). DNA concentration was determined for each
purified amplicon using Qubit (Life technologies). For
the single isolate validation, amplicons were sequenced
with Sanger (DNA Sequencing Facility, University of
California, Davis).

For high-throughput sequencing, equimolar amounts
of all barcoded amplicons were pooled into a single sam-
ple, the total concentration of which was determined by
Qubit. Five hundred nanograms of pooled DNA were
then end-repaired, A-tailed and single-index adapter li-
gated (Kapa LTP library prep kit, Kapa Biosystems).
After adapter ligation, the sample was size-selected with
two consecutive 1X bead-based cleanups; concentration
and size distribution were determined with Qubit and
Bioanalyzer (Agilent Technologies), respectively. DNA
libraries were submitted for sequencing in 250-bp
paired-end mode on an Illumina MiSeq (UCDavis Gen-
ome Center DNA technologies Core). All FASTQ files
with the amplicon sequences separated by barcode were
deposited in the NCBI Sequence Read Archive (BioPro-
ject: PRJNA485180; SRA accession: SRP156804).

Amplicon sequencing community analysis
Adapter-trimming was carried out using BBDuk (BBMap
v.35.82; http://jgi.doe.gov/data-and-tools/bb-tools/) in
paired-end mode with sequence “AGATCGGAAG” and
the following parameters: ktrim = r, k = 10, mink = 6,
edist = 2, ordered = t, qtrim = f and minlen = 150.
Adapter-trimmed FASTQ files were then quality-filtered
using Trimmomatic v0.36 [82] with paired-end mode,
phred33, a sliding windows of 4:19, and a minimum
length of 150 bp. Sequencing data were then processed
in the QIIME environment v1.9.1 [73]. Barcodes were
extracted from the FASTQ files using the “extract_bar-
codes.py” function with the “-a” argument that attempts
read orientation and a barcode length of eight base pairs.
The resulting sequences and barcodes were used to tag
the reads with “split_libraries_fastq.py”, a threshold qual-
ity score of 20, and a barcode size of eight basepairs. Op-
erational taxonomic units (OTUs) were identified with a
99% similarity threshold using the UCLUST algorithm
[72] with the reverse strand match enabled (“-z”), and
the longest sequence of each OTU was chosen as repre-
sentative sequence. Taxonomy assignment was carried
out using Mothur (v1.39.5; [58] with the UNITE data-
base v7.2 [75] or the custom database as reference with
a 80% confidence threshold). Two additional OTU clas-
sifiers, BLAST and UCLUST, as implemented in QIIME
were also used to analyze mock samples and field sam-
ples for taxonomy assignment testing inside QIIME
(Additional files 4 and 6). For each sample, sequences
were randomly sampled with the function “single_rare-
faction.py” from the OTU tables to obtained a total
number of sequences per sample equal to the lowest
number of reads across GTAA, BITS, and SP datasets.
In the mock and N. parvum artificially inoculated sam-
ples, the lowest value corresponded to 1119 reads of the
sample “a33” from the GTAA primers. In the field sam-
ples the value corresponded to 23,609 reads of sample
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“ED6” from the BITS primers. The Taxonomy tables at
the genus level were then created using “summarize_tax-
a.py”. Taxonomic assignments based on OTUs generated
in QIIME were compared with results obtained by
BLASTn (v2.2.31+) alignments of each individual read to
the custom ITS database. We considered as hits only
those alignments that covered more than 97% of the query
sequence with sequence identity greater than 97%. The se-
quence with the highest identity was chosen as the best
hit for each query sequence. The results were compared
to the expected values and presented in Additional file 4.

Additional files

Additional file 1: Text S1. Assembled amplicon sequences produced
by the GTAA primers. Amplicons were sequenced with Sanger. Each
sequence description includes the GenBank accession number to the
best hit of the custom database created in this study as well as identity
and coverage of the alignment. (FASTA 2 kb)

Additional file 2: Table S1. Table with GenBank accession numbers
and sequences retrieved from the NCBI used as a database for primer
evaluation. TP: True Positive, FP: False Positive and FN: False Negative.
(XLSX 124 kb)

Additional file 3: Table S2. Table with the proportions of fungal DNA
of pure cultures of six grapevine trunk pathogens mixed to create the
mock samples. Samples m01 to m05 were created with a mix of equal
proportions of the six species. Samples s01 to s21 were created with a
mix of 10% of one or more species, and a remaining percentage of
grape DNA. The values presented are the expected proportions of fungal
DNA. (XLSX 9 kb)

Additional file 4: Figure S1. Scatterplots showing the correlation
between expected relative abundance based on how mock communities
were prepared and the observed relative abundance of fungal taxa
detected in the mock communities using the GTAA and BITS primers.
The genus abundances resulting from the QIIME pipeline with Mothur,
BLASTn and UCLUST taxonomy classifiers, as well as direct BLASTn of the
reads to the custom database created in this study, were compared to
the expected values. R values correspond to Pearson’s correlation
coefficients. (PDF 643 kb)

Additional file 5: Figure S2. Scatterplots showing the correlation
between expected relative abundances and observed values using GTAA
and BITS primers for individual fungal taxa in the mock communities. R
values correspond to Pearson’s correlation coefficients. (PDF 286 kb)

Additional file 6: Figure S3. Scatterplots showing the correlation of
relative abundance of fungal taxa detected using GTAA and BITS, and
whole-genome shotgun metagenomics results with multiple taxonomy
classifiers. The genus abundances resulting from the QIIME pipeline with
Mothur, BLASTn, and UCLUST, were compared to the metagenomics
values. Mothur results were also compared to the other classifying
methods. R values correspond to Pearson’s correlation coefficients. (PDF
634 kb)

Additional file 7: Table S3. List of forward GTAA primers with linker
and barcode sequences. (XLSX 46 kb)
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