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Abstract
Background:  Nitrogen fixation gene expression in Sinorhizobium meliloti, the alfalfa symbiont,
depends on a cascade of regulation that involves both positive and negative control. On top of the
cascade, the two-component regulatory system FixLJ is activated under the microoxic conditions
of the nodule. In addition, activity of the FixLJ system is inhibited by a specific anti-kinase protein,
FixT. The physiological significance of this negative regulation by FixT was so far unknown.

Results:  We have isolated by random Tn5 mutagenesis a S. meliloti mutant strain that escapes
repression by FixT. Complementation test and DNA analysis revealed that inactivation of an
asparagine synthetase-like gene was responsible for the phenotype of the mutant. This gene, that
was named asnO, encodes a protein homologous to glutamine-dependent asparagine synthetases.
The asnO gene did not appear to affect asparagine biosynthesis and may instead serve a regulatory
function in S. meliloti. We provide evidence that asnO is active during symbiosis .

Conclusions:  Isolation of the asnO mutant argues for the existence of a physiological regulation
associated with fixT and makes it unlikely that fixT serves a mere homeostatic function in S. meliloti.
Our data suggest that asnO might control activity of the FixT protein, in a way that remains to be
elucidated. A proposed role for asnO might be to couple nitrogen fixation gene expression in S.
meliloti to the nitrogen needs of the cells.

Background
Sinorhizobium meliloti forms N2-fixing nodules on the

roots of alfalfa (Medicago sativa) and closely related

plants. Expression of nitrogen fixation genes is under

both positive and negative control. This regulation de-

pends on a regulatory cascade, on top of which the two-

component regulatory system FixLJ activates expression

of nitrogen fixation genes in response to microoxic con-

ditions [1], such as those that prevail inside the nodule

[2]. Under microoxic conditions, the sensor histidine ki-

nase FixL autophosphorylates and transfers its phos-

phate to the FixJ transcriptional regulator protein [3].

Phosphorylated FixJ then activates transcription of two

intermediate regulatory genes, nifA and fixK, that both

encode transcriptional regulators [3]. NifA mediates ac-

tivation of nif genes involved in nitrogenase biosynthesis

whereas FixK, a member of the Crp/Fnr family, activates

expression of genes involved in the synthesis of a respi-
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ratory oxidase complex [4, 5]. fixK is also indirectly re-

sponsible for negative regulation of the cascade since it

controls expression of a gene, fixT, that negatively affects

expression of FixLJ dependent genes (see Figure 6). We
have shown recently that the FixT protein negatively af-

fects the expression of nifA and fixK by inhibiting phos-

phorylation of the sensor hemoprotein kinase FixL and,

by consequence, phosphorylation of FixJ [6]. Whether

FixT serves a mere homeostatic function in S. meliloti

(the level of FixT protein feed-back controlling activity of

the FixLJ system) or whether FixT allows integration of

a physiological signal by the FixLJ system was so far un-

known. We addressed this question by looking for S. me-

liloti mutants in which the FixT protein would not be

active in repression.

Here we report the isolation of a S. meliloti mutant strain

that phenotypically escapes the repressor activity exert-

ed by FixT. The mutation lies in a gene named asnO en-

coding a protein homologous to glutamine-

amidotranferases. We discuss the significance of this

finding with respect to the regulation of symbiotic nitro-

gen fixation.

Results and Discussion
Isolation of a S. meliloti mutant strain escaping repression 
by FixT
We previously observed that in a S. meliloti wild-type

strain, constitutive expression of fixT, driven by the
strong neomycin promoter of plasmid pMF10 (Table 1),

resulted in strong inhibition of the expression of a fixK-

lacZ reporter fusion (pMF457 plasmid; Table 1), thus

leading to white colonies on X-gal containing plates. We

used this observation to screen for S. meliloti mutants

that would escape repression by FixT. After random Tn5

mutagenesis of a strain overexpressing fixT, we isolated

blue colonies on X-gal containing plates. These putative

mutant colonies were subsequently assayed for β-galac-

tosidase activity in liquid cultures under microoxic con-

ditions. Four independent mutants were isolated, that

were characterized by an unrepressed level of expression

of the fixK gene despite the constitutive expression of

fixT (Figure 1A; compare lanes 2 and 3). Two of the mu-

tants possessed a Tn5 insertion in the same gene. One of

these two mutants, GMI401, was further characterized.

Southern-Blot analysis of genomic DNA digested by dif-

ferent restriction enzymes, revealed a single Tn5 inser-

tion in GMI401 (data not shown). Transduction

experiments using the N3 phage, showed genetic linkage

between the mutant phenotype and the Tn5 insertion

since reintroduction of the pMF10 plasmid in the trans-

duced strain confirmed the lack of repression of fixK by

overexpressed fixT (Figure 1A; lanes 5 and 6). This ex-

cluded the possibility that a mutation on one of the plas-

mids, pMF457 or pMF10, could have been responsible

for the phenotype observed.

In the GMI401 mutant strain, the level of fixK gene ex-
pression in the absence of pMF10 was the same as in the

wild-type strain (Figure 1A; compare lane 1 to lane 4 and

lane 5). This result demonstrated that activation of fixK

gene expression by the FixLJ two-component system

was not affected in the mutant strain, but rather that the

phenotype was genuinely due to decreased repression by

fixT. Western-Blot analysis using an antibody directed

against the FixT protein indicated that the level of FixT

protein was the same in the GMI211(pMF10) wild-type

strain and in the GMI401(pMF10) mutant strain (data

not shown).

Similar results have been obtained using a nifA-lacZ fu-

sion (pCHK57 plasmid). The inhibition of nifA-lacZ ex-

pression by overexpressed fixT that was observed in a

GMI211 wild-type strain was not observed anymore in

the GMI401 mutant strain (data not shown).

Altogether, these results tend to indicate that, in the

GMI401 mutant strain, the absence of repression of fixK

and nifA by fixT was due to a reduced inhibition of the

FixLJ system by the FixT protein.

The GMI401 mutant strain produced nitrogen fixing

nodules on M. sativa, as did the GMI211 wild-type strain
(data not shown). Whereas the GMI211 parent strain ex-

pressing fixT constitutively produced non N2-fixing nod-

ules (Figure 1B), the GMI401 mutant strain was able to

induce effective N2-fixing nodules on alfalfa (Medicago

sativa cv. gemini) thus enabling the plants to grow in the

absence of combined nitrogen. Hence, the gene that

modulates repression by FixT activity ex planta is also

active in planta.

The Tn5-insertion maps in an asparagine synthetase-like 
gene
The Tn5 insertion in GMI401 was positioned on the

pSymB megaplasmid of S. meliloti (see Materials and

Methods), whereas the fixLJ, fixT and fixK genes are lo-

cated on pSymA megaplasmid. The genomic DNA flank-

ing the Tn5 insertion was sequenced (Figure 2 and

Materials and Methods). Prediction of coding regions

around the region of interest was performed using the

FrameD program [7]. As shown in Figure 2, this analysis

revealed a putative open reading frame encompassing

the Tn5 insertion site and another putative orf located

just dowstream. On the basis of the sequence analysis,

these two genes may belong to the same operon, and the

Tn5 insertion may thus affect expression of both genes.

During the annotation phase of the S. meliloti genome
sequencing project (http://sequence.toulouse.inra.fr/
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Figure 1
Characterization of the S. meliloti mutant strain (GMI401) escaping FixT repressor activity. Panel A : We moni-
tored microoxic expression of a fixK-lacZ fusion carried by the reporter plasmid pMF457 in S. meliloti. pMF10 allows constitu-
tive expression of fixT, pMF11 is a negative control (fixT cloned in the antisense orientation). 1 : wild-type strain
GMI211(pMF457)(pMF11); 2 : wild-type strain GMI211(pMF457)(pMF10); 3 : mutant strain GMI401(pMF457)(pMF10); 4 :
mutant strain GMI401 (pMF457) (pMF11); 5 : transductant strain GMI401(pMF457); 6 : transductant strain
GMI401(pMF457)(pMF10). Panel B : In planta phenotype of the wild-type GMI211 (pMF10) and mutant strain GMI401 (pMF10).
Medicago sativa seedlings were inoculated with the bacterial strains and grown for 3 weeks on medium lacking any nitrogen
source.
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meliloti.html) that was run concomitantly to this work,

the upstream gene was named asnO, for its homology to

the Bacillus subtilis asnO gene. We have thus adopted

this annotation in this paper. The deduced amino se-

quence of the second orf, that was named SMb20482, is

similar to an acetyl-transferase in the amino-terminal

part of the protein and to a cyanophycin synthetase gene

in the carboxy-terminal part of SMb20482.

The deduced amino acid sequence of the gene carrying

the Tn5 insertion is similar to that of glutamine-depend-

ent asparagine synthetases of various bacteria including

B. subtilis and Escherichia coli (see Figure 3). These pro-

teins are members of the PurF family of glutamine-de-

pendent amidotransferases. All PurF enzymes possess a

conserved amino-terminal cysteine, which is essential

for glutamine-dependent amidotransferase activity [8,

9]. This Cys2 residue is also conserved in the S. meliloti

asnO product. The PurF-type amidotransferases possess

14 additional conserved residues in the amino-terminal

glutamase domain [8, 9]. As shown by the alignment of

Figure 3, all these residues are present in the asnO prod-

uct of S. meliloti. We conclude that the AsnO protein be-

longs to the PurF family of glutamine amidotransferases.

The carboxy-terminal domian of the proteins, carrying

the synthetase activity, is less conserved.

Figure 2
Genetic organisation of the asnO region. The genes are
shown as thick arrows. The red small arrow indicates the
position of the Tn5 insertion in the GMI401 mutant strain.
The position and orientation of the specific primers are
shown in small green arrows.

Table 1: Bacterial strains and plasmids used

Material Characteristics References

Strains Genotype
S. meliloti
GMI211 SmR Nod+ Fix+ [20]
GMI401 GMI211 asnO::Tn5 SmR NmR This work
GMI5704 GMI211 fixJ2.3::Tn5 SmR NmR BleoR [18]
E. coli
ER asnA31 asnB32 thi [15]
MM294 Pro-82 thi-1 hsdR17 supE44 endA1 [21]
DH5 α endA1 hsdR17 (rk 

-mk+) supE44 thi-1 recA1 gyrA relA1∆ (lacIZYA- [29]
argF)U169 deoR (φ 80dlac∆ (lacZ)M15)

Plasmids

pMF457 pGD926 (IncP broad host range vector) derivative carrying a fixK-
lacZ fusion with a mutation in the fixT promoter. TcR

pCHK57 pGMI41211 (Inc-P1 broad host range vector) derivative carrying a [31]
nifA-lacZ fusion. TcR

pMF11 Same as pMF10 but with fixT in reverse orientation. GmR
pBH1 pBBR1-MCS3 derivative, carrying an HindIII fragment containing This work

the asnO gene and the SMb20482 orf.
pBasn2 pBBR1-MCS3 derivative, expressing asnO under the control of the This work

pLac promoter
pUC23 pUC18 digested with EcoRI, carrying the S. meliloti EcoRI This work

fragment containing the asnO region with the Tn5 insert. ApR,
KmR.

BAC37 pBeloBAC11 containing a 100 kb S. meliloti genome fragment [26]
carrying the asn-like region of pSymB.

pRK602 PRK600::Tn5, Cmr, Nm-Kmr [21]
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Figure 3
AsnO of S. meliloti is related to glutamine-dependent amido transferases. Alignment of amino acid sequences of
AsnO and AsnB from S. meliloti, AsnO (swissprot accession number: Sp 005272) and AsnB (Sp P54420) from B. subtilis, AsnB
from E. coli (Sp P22106), and LtsA from C. glutamicum (Sp BAA89484). The alignement was done by using ClustalW programme
[31].
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The asnO gene complements the mutant phenotype of 
GMI401
In order to perform complementation trials, we cloned

the asnO gene in the pBBRI-MCS3 plasmid [10], a shut-

tle vector that replicates in both E. coli and S. meliloti. A

DNA fragment containing the entire asnO coding region

and its 5' flanking promoter region, was cloned down-

stream of the lac promoter of the plasmid pBBRI-MCS3.

We introduced the corresponding pBasn2 plasmid in a

strain expressing fixT constitutively and monitored ex-

pression of fixK under microoxic conditions by RT-PCR

experiments. Data indicated complementation of the

GMI401 mutant strain by the asnO transgene (Figure 4).

The restoration of the wild-type phenotype (ie inhibition

of fixK expression in the presence of pMF10), demon-

strated the implication of the asnO gene in the character-

istic phenotype observed in the GMI401 mutant strain.

However, restoration of the wild-type phenotype was not

complete, for a reason that we do not understand.

asnO inactivation in GMI401 does not lead to auxotrophy 
for asparagine
Because of the homology of the S. meliloti asnO gene

product with known asparagine synthetases, we tested
whether the asnO gene was involved in asparagine bio-

synthesis, by three complementary approaches (data not

shown).

First, we observed that the mutant strain GMI401 and

the isogenic GMI211 wild-type strain, grew at equal and
similar rates in minimal medium with or without aspar-

agine.

Second, we tested the ability of pBasn2 to restore pro-

totrophy of a E. coli asparagine auxotroph, a double

asnB/asnA mutant strain (Table 1). In asparagine-sup-

plemented minimal medium, all strains grew at equal

rates. However, in the absence of added asparagine, the

S. meliloti asnO gene under the control of the plac pro-

moter was unable to complement the asparagine auxo-

trophy of the asnA/asnB E. coli mutant strain.

Third, addition of asparagine at different concentrations

in minimal medium, did not lead to complementation of

the S. meliloti GMI401 mutant phenotype, i.e did not re-

store repression of fixK gene expression by overex-

pressed fixT. This observation suggested that the mutant

phenotype is not dependent on the level of asparagine,

and hence, that the asnO gene does not mediate asparag-

ine synthesis.

The reactions catalyzed by asparagine synthetases in-

volve two different family of proteins depending on

whether glutamine or ammonia is used as a nitrogen

source. Members of the AsnA family, that are found in
procaryotes, only use ammonia as the amino group do-

Figure 4
Complementation of the mutant phenotype by the
asnO gene. RNAs isolated from free-living microoxic cul-
tures (2% O2) of S. meliloti strains grown in M9 minimal
medium were amplified by RT-PCR using specific primers.
RT-PCR products were separated on agarose gels, blotted
onto a nylon membrane and hybridized with the 32P labelled
probe of the expected product. Upper panel : fixK gene (see
Materials and Methods). Lower panel : hemA gene (control).
Lane 1 = GMI211 (pMF10), Lane 2 = GMI401 (pMF10), Lanes
3 and 4 = GMI401 (pMF10) (pBasn2) of two independent
transconjugants.

Figure 5
asnO gene expression RT-PCR analysis of RNAs iso-
lated from S. meliloti GMI211 wild-type strain (wt) or
GMI5704 fixJ mutant strain (fixJ) grown in minimal
medium M9 in either oxic (+) or microoxic (2% O2)
conditions (-). RT-PCR were performed with either asnO
or hemA specific primers and the products were separated
on agarose gels, blotted on a nylon membrane and hybridized
with the corresponding 32P labelled PCR product and ana-
lysed on a Phosphorimager.
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nor [11, 12]. The AsnB family, which is found in both pro-

caryotes and eucaryotes, preferentially uses glutamine as

nitrogen source [13, 14]. E. coli possesses an asnA and an

asnB gene [15] whereas three asparagine synthetase
genes, asnB, asnH and asnO, which all belong to the

AsnB family, have been characterized in B. subtilis. No

member of the AsnA family has been found in B. subtilis

[16]. Complete genome analysis indicated that S. meliloti

carries no asnA-like gene and two asnB-type genes (see

http://sequence.toulouse.inra.fr/meliloti.html) one of

which is asnO and a second gene that was named asnB.

Sequence analysis is consistent with the possibility that

the asnB gene of S. meliloti might be the ortholog of the

biosynthetic asnB gene of E. coli and B. subtilis whereas

the asnO gene mutated in GMI401 may play a regulatory

function, in relationship with nitrogen fixation and mi-

crooxic respiration (Figure 3). Similarly, the asnO gene

of B. subtilis has a regulatory role in sporulation [16],

whereas the ltsA gene of Corynebacterium glutamicum

is involved in cell wall formation [17].

asnO gene expression is induced in microoxic conditions
We have monitored by RT-PCR experiments expression

of the asnO gene in a wild-type strain grown in minimal

medium, in either oxic or microoxic conditions. The re-

sults showed that asnO gene expression was slightly en-

hanced in microoxic conditions as compared to oxic

conditions (Figure 5). No effect of a fixJ mutation was

observed on asnO expression using a GMI5704 fixJ mu-
tant strain [18].

Conclusions
FixT is an intriguing protein as it has not been described

so far in any other bacterium besides S. meliloti. Further-

more its mode of action is original, as it has the capacity

to block phosphorylation, and hence activity, of the FixL

sensor histidine kinase. They are only a few examples of

such anti-kinase proteins in the literature. Lastly, FixT

primary sequence did not provide clues to its function.

There is thus a great deal of interest in determining the

biological role of fixT in S. meliloti.

The present work argues in favor of a physiological func-

tion associated with fixT, by showing that mutation of

the asnO gene impairs repression by the FixT protein.

This finding brings support to the previous suggestion

that FixT may allow integration of an additional signal by

the FixLJ two-component regulatory system whose ac-

tivity is primarily regulated by oxygen (Figure 6). Multi-

ple signal integration by a single two-component

regulatory system is well documented for instance in B.

subtilis [19].

Further work is required to elucidate the relationship be-
tween fixT, fixL and asnO. We propose as a working

model that the absence of AsnO may result in an imbal-

ance in the pool of a metabolite (e.g a substrate or a prod-

uct of AsnO), that would affect the intrinsic repressing

activity of FixT or, equally, the interaction between FixT
and FixL. Identification of the reaction catalyzed by

AsnO and further elucidation of the mode of action of the

FixT protein should shed light to this model. Because

glutamine, a likely by-product of nitrogen fixation in

symbiotic rhizobia, is a predicted substrate of the AsnO

protein, it is tempting to speculate that asnO and fixT

may provide a link between the nitrogen status of bacte-

ria -or of the plant cell- and nitrogen fixation activity and

reducing power generation. Possibly, such a genetic de-

vice may connect the nitrogen needs of the plant to the

nitrogen fixation activity of the microsymbiont.

Materials and Methods
Bacterial strains, plasmids and growth conditions
The bacterial strains and plasmids used in this study are

listed in Table 1. S. meliloti GMI211, the symbiotically ef-

fective parent strain used in this study is a lac Smr, Nod+

Fix+ derivative of S meliloti RCR2011 [20]. Tn5 transpo-

son mutagenesis of GMI211 was performed using the

pRK602 plasmid (Table 1, [21]). In order to isolate ran-

dom Tn5 insertions in the S. meliloti genome, we conju-

gated E. coli MM294(pRK602) donor strain with a S.

meliloti GMI211(pMF10) recipient strains, and screened

for streptomycin (100 µg/ml) and neomycin (100 µg/ml)

resistant transconjugants.

S. meliloti strains were grown at 30°C in TY complex me-

dium or in defined M9 medium [22] supplemented with

0.3 mM CaCl2, 1 mM MgSO4 and 2 µM biotin. Sterilised

carbon sources were added at 20 mM final concentra-

tions. Microoxic conditions were achieved as described

by de Philip et al [23] (2% oxygen for 4 h). For testing in-

duction of fixK-LacZ expression by microoxic condi-

tions, S. meliloti strains were previously grown to OD600

= 0.3 in M9 medium. β-Galactosidase assays were per-

formed as described by de Philip et al. [23].

Southern Blots
DNA techniques were carried out as described by Sam-

brook et al. [24]. S. meliloti genomic DNA was prepared

as described by Chen and Kuo [25]. For Southern-Blot

analysis, 1 µg of genomic DNA was digested at 37°C for 4

hours with the appropriate enzymes. DNA fragments

were separated on a 0.8% agarose gel, transferred onto a

nylon membrane (BiodyneA transfer membrane, Pall,

East Hills, NY), and hybridized with a Tn5 32P-labelled

probe.

asnO cloning and sequencing
A genomic fragment of S. meliloti GMI401 carrying the
Tn5 insertion was cloned from a EcoRI-digested genome
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fragment into a pUC18 plasmid, resulting in the pUC23

plasmid (see Table 1). However, the presence of a EcoRI
restriction site in the asnO gene (see Figure 2) did not

permit to obtain the entire sequence of the gene from this

construct. Therefore, a library of 96 BACs covering the S.

meliloti genome [26], was screened to isolate the full-

length asnO gene. PCR screening of the BAC library was

performed using the oligonucleotide primers ASN+54

and ASN-9 shown in Figure 2. By this method, we could

detect the presence of the asnO gene on BAC37, that was

assigned to the pSymB megaplasmid [26]. Complete se-

quence of the asnO region was determined by a primer-

walking approach on the BAC37 and pBH1 plasmid (see

Table 1), which was obtained by subcloning a HindIII

fragment of BAC37 in pBBR1-MCS3 [10]. Sequencing

was performed on a ABI373 automated sequencer (ABI,

Columbia, MD), using the ABI PRISM Dye terminator

cycle sequencing ready kit (Perkin-Elmer, Oak, Brook,

IL).

Database searches
Putative open reading frame were predicted using the

FrameD program [7] used for S. meliloti whole genome

analysis (http://sequence.toulouse.inra.fr/melilo-

ti.html). Protein analysis was done with the NCBI web

page using the BLAST2 package program [27] against

the NCBI-nr and Swiss-Prot databases. Homologous do-

mains searches were driven using the ProDom database

[28].

Plant methods
Medicago sativa cv. Gemini seedlings were aseptically

grown on agar slants made up with nitrogen-free Fahrae-

us medium. Three-day-old plants were inoculated with

the different S. meliloti strains and grown for 3 weeks be-

fore observation.

RNA preparation
The bacteria from a 25 ml culture at 0.4 OD600nm were

harvested and RNA prepared with the Qiagen RNeasy kit

as described by the manufacturer. DNA was eliminated

by addition of 7.5 Units of FPLC-Pure RNase-free DNa-

seI (Amersham-Pharmacia Biotech). RNA was further

extracted with phenol-chloroform and then precipitated

with ethanol. After washing with 70% ethanol, the pellet

was resuspended in nuclease-free water. RNA was quan-

tified by absorbance measurements at 260 nm. Absence

of DNA contamination was verified by PCR amplifica-

tion.

RT-PCR analysis
RT-PCR reactions were performed according to the man-

ufacturer, using the SuperScript™ One-Step RT-PCR

System (GibcoBRL).

The following oligonucleotides were used for reverse
transcription of the messenger RNA and amplification of

the product to evaluate gene expression :

For the hemA gene: hemAr (reverse primer) : 5'-GTC-

GATCGCGTTCTT-3'; hemAf (foward primer) : 5'-

TGGATGGGCTGCATCA-3'

For the asnO gene: RTA1 (reverse primer) : 5'-TGCG-

TATTCTCGACCTG-3'; RTA2 (foward primer) : 5'-

TCGCGAAAATTGTAGATG-3'

For the fixK gene: KPR (reverse primer) : 5'- CCGAT-

TACCAGAAGATGC-3'; KPF (foward primer) : 5'-TATC-

TACCGCCTCCTTTC-3'

RT-PCR products were electrophoresed on a 2% agarose

gel, blotted onto a nylon membrane and probed with a
32P-labeled DNA probe prepared from the gene of inter-

est. Washing was done with 0.1XSSC, 0.1%SDS at 42°C

during 30 min.
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